1887
Volume 65, Issue S1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the crustal structures including variations of the crustal density and of the depth of the crust–mantle boundary, that is, Moho. However, due to non‐linearity of this inverse problem, classical inversion methods would fail whenever there is no reliable initial model. Swarm intelligence algorithms, such as particle swarm optimisation, are a promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; they do not use the derivatives of the objective function, hence allowing the use of L norm; and finally, they are global search methods, meaning, the problem could be non‐convex. In this paper, quantum‐behaved particle swarm, a probabilistic swarm intelligence‐like algorithm, is used to solve the non‐linear gravity inverse problem. The method is first successfully tested on a realistic synthetic crustal model with a linear vertical density gradient and lateral density and depth variations at the base of crust in the presence of white Gaussian noise. Then, it is applied to the EIGEN 6c4, a combined global gravity model, to estimate the depth to the base of the crust and the mean density contrast between the crust and the upper‐mantle lithosphere in the Eurasia–Arabia continental collision zone along a 400 km profile crossing the Zagros Mountains (Iran). The results agree well with previously published works including both seismic and potential field studies.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12558
2017-12-26
2024-04-25
Loading full text...

Full text loading...

References

  1. AcarR. and VogelC.R.1994. Analysis of bounded variation penalty methods for ill‐posed problems. Inverse problems10(6), 1217.
    [Google Scholar]
  2. AfonsoJ.C., FernándezM., RanalliG., GriffinW. and ConnollyJ.2008. Integrated geophysical‐petrological modeling of the lithosphere and sublithospheric upper mantle: methodology and applications. Geochemistry, Geophysics, Geosystems9(5).
    [Google Scholar]
  3. AlaviM.1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics229(3), 211–238.
    [Google Scholar]
  4. Al‐LazkiA.I., Al‐DameghK.S., El‐HadidyS.Y., GhodsA. and TatarM.2014. Pn‐velocity structure beneath Arabia–Eurasia Zagros collision and Makran subduction zones. Geological Society, London, Special Publications392(1), 45–60.
    [Google Scholar]
  5. Al‐LazkiA.I., SandvolE., SeberD., BarazangiM., TurkelliN. and MohamadR.2004. Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates. Geophysical Journal International158(3), 1024–1040.
    [Google Scholar]
  6. BalkayaÇ., EkinciY.L., GöktürklerG. and TuranS.2017. 3D non‐linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm. Journal of Applied Geophysics136, 372–386.
    [Google Scholar]
  7. BarazangiM., SandvolE. and SeberD.2006. Structure and tectonic evolution of the Anatolian plateau in eastern Turkey. Geological Society of America Special Papers409, 463–473.
    [Google Scholar]
  8. BarbosaV.C. and SilvaJ.B.2011. Reconstruction of geologic bodies in depth associated with a sedimentary basin using gravity and magnetic data. Geophysical Prospecting59(6), 1021–1034.
    [Google Scholar]
  9. Basler‐ReederK., LouieJ., PullammanappallilS. and KentG.2016. Joint optimization of vertical component gravity and P‐wave first arrivals by simulated annealing. Geophysics81(4), ID59–ID71.
    [Google Scholar]
  10. BasuyauC. and TiberiC.2011. Imaging lithospheric interfaces and 3D structures using receiver functions, gravity, and tomography in a common inversion scheme. Computers & geosciences37(9), 1381–1390.
    [Google Scholar]
  11. BerberianM.1995. Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics241(3), 193–224.
    [Google Scholar]
  12. BirdP.1978. Finite element modeling of lithosphere deformation: the Zagros collision orogeny. Tectonophysics50(2–3), 307–336.
    [Google Scholar]
  13. BonnansJ.‐F., GilbertJ.C., LemaréchalC. and SagastizábalC.A.2006. Numerical optimization: theoretical and practical aspects, Springer Science & Business Media.
    [Google Scholar]
  14. ClercM. and KennedyJ.2002. The particle swarm‐explosion, stability, and convergence in a multidimensional complex space. Evolutionary Computation, IEEE Transactions on6(1), 58–73.
    [Google Scholar]
  15. CorcheteV., ChourakM. and KhattachD.2010. A methodology for filtering and inversion of gravity data: an example of application to the determination of the Moho undulation in Morocco. Engineering2(03), 149.
    [Google Scholar]
  16. CordellL.1973. Gravity analysis using an exponential density‐depth function‐San Jacinto Graben, California. Geophysics38(4), 684–690.
    [Google Scholar]
  17. ČumaM., WilsonG.A. and ZhdanovM.S.2012. Large‐scale 3D inversion of potential field data. Geophysical Prospecting60(6), 1186–1199.
    [Google Scholar]
  18. DehghaniG. and MakrisJ.1984. The gravity field and crustal structure of Iran. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen168, 215–229.
    [Google Scholar]
  19. Del ValleY., VenayagamoorthyG.K., MohagheghiS., HernandezJ.‐C. and HarleyR. G.2008. Particle swarm optimization: basic concepts, variants and applications in power systems. Evolutionary Computation, IEEE Transactions on12(2), 171–195.
    [Google Scholar]
  20. DeweyJ., HemptonM., KiddW., SarogluF.T. and ŞengörA.1986. Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—A young collision zone. Geological Society, London, Special Publications19(1), 1–36.
    [Google Scholar]
  21. DiouaneY.2014. Globally convergent evolution strategies with application to earth imaging problem in geophysics.
  22. DorigoM., ManiezzoV. and ColorniA.1996. Ant system: optimization by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on26(1), 29–41.
    [Google Scholar]
  23. EberhartR.C. and KennedyJ.1995. A new optimizer using particle swarm theory, paper presented at Proceedings of the sixth international symposium on micro machine and human science, New York, NY.
  24. Fernández ÁlvarezJ.P., Fernández MartínezJ.L. and Menéndez PérezC.O.2008. Feasibility analysis of the use of binary genetic algorithms as importance samplers application to a 1‐D DC resistivity inverse problem. Mathematical geosciences40(4), 375–408.
    [Google Scholar]
  25. FörsteC., BruinsmaS., AbrikosovO., FlechtnerF., MartyJ.‐C., LemoineJ.‐M.et al. 2014. EIGEN‐6C4‐The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse, paper presented at EGU General Assembly Conference Abstracts.
  26. FulleaJ., AfonsoJ.C., ConnollyJ., FernándezM., García‐CastellanosD. and ZeyenH.2009. LitMod3D: an interactive 3‐D software to model the thermal, compositional, density, seismological, and rheological structure of the lithosphere and sublithospheric upper mantle. Geochemistry, Geophysics, Geosystems10(8).
    [Google Scholar]
  27. Gallardo‐DelgadoL.A., Pérez‐FloresM.A. and Gómez‐TreviñoE.2003. A versatile algorithm for joint 3D inversion of gravity and magnetic data. Geophysics68(3), 949–959.
    [Google Scholar]
  28. Gómez‐OrtizD. and AgarwalB.N.2005. 3DINVER. M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg's algorithm. Computers & geosciences31(4), 513–520.
    [Google Scholar]
  29. Gómez‐OrtizD., AgarwalB., TejeroR. and RuizJ.2011. Crustal structure from gravity signatures in the Iberian Peninsula. Geological Society of America Bulletin123(7–8), 1247–1257.
    [Google Scholar]
  30. GonzalezT.F.2007. Handbook of approximation algorithms and metaheuristics, CRC Press.
    [Google Scholar]
  31. GrayverA.V. and KuvshinovA.V.2016. Exploring equivalence domain in nonlinear inverse problems using Covariance Matrix Adaption Evolution Strategy (CMAES) and random sampling. Geophysical Journal International205(2), 971–987.
    [Google Scholar]
  32. HafkenscheidE., WortelM. and SpakmanW.2006. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. Journal of Geophysical Research: Solid Earth111(B8).
    [Google Scholar]
  33. HansenN. and OstermeierA.2001. Completely derandomized self‐adaptation in evolution strategies. Evolutionary computation9(2), 159–195.
    [Google Scholar]
  34. HansenP.C.1998. Rank‐deficient and discrete ill‐posed problems: numerical aspects of linear inversion, Siam.
  35. HatzfeldD., TatarM., PriestleyK. and Ghafory‐AshtianyM.2003. Seismological constraints on the crustal structure beneath the Zagros Mountain belt (Iran). Geophysical Journal International155(2), 403–410.
    [Google Scholar]
  36. KarabogaD. and BasturkB.2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization39(3), 459–471.
    [Google Scholar]
  37. KennedyJ.2003. Bare bones particle swarms, paper presented at Swarm Intelligence Symposium, 2003. SIS‧03. Proceedings of the 2003 IEEE, IEEE.
  38. KennedyJ.2004. Probability and dynamics in the particle swarm, paper presented at congress on evolutionary computation.
  39. KennedyJ.2005. Dynamic‐probabilistic particle swarms, paper presented at Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, ACM.
  40. KennedyJ., KennedyJ.F., EberhartR.C. and ShiY.2001. Swarm intelligence, Morgan Kaufmann.
  41. KeskinM.2007. Eastern Anatolia: a hotspot in a collision zone without a mantle plume. Geological Society of America Special Papers430, 693–722.
    [Google Scholar]
  42. LimaW.A., MartinsC.M., SilvaJ.B. and BarbosaV.C.2011. Total variation regularization for depth‐to‐basement estimate: part 2—Physicogeologic meaning and comparisons with previous inversion methods. Geophysics76(1), I13–I20.
    [Google Scholar]
  43. LimaW.A. and SilvaJ.B.2014. Combined modeling and smooth inversion of gravity data from a faulted basement relief. Geophysics79(6), F1–F10.
    [Google Scholar]
  44. LiuJ., SunJ. and XuW.2006. Quantum‐behaved particle swarm optimization with adaptive mutation operator, in Advances in Natural Computation, edited, Springer, 959–967.
  45. LiuS., HuX. and LiuT.2014. A stochastic inversion method for potential field data: ant colony optimization. Pure and Applied Geophysics171(7), 1531–1555.
    [Google Scholar]
  46. LiuS., HuX., LiuT., XiY., CaiJ. and ZhangH.2015. Ant colony optimisation inversion of surface and borehole magnetic data under lithological constraints. Journal of Applied Geophysics112, 115–128.
    [Google Scholar]
  47. LuenbergerD.G. and YeY.1984. Linear and nonlinear programming, Springer.
    [Google Scholar]
  48. ManamanN.S. and ShomaliH.2010. Upper mantle S‐velocity structure and Moho depth variations across Zagros belt, Arabian–Eurasian plate boundary. Physics of the Earth and Planetary Interiors180(1), 92–103.
    [Google Scholar]
  49. ManamanN.S., ShomaliH. and KoyiH.2011. New constraints on upper‐mantle S‐velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion. Geophysical Journal International184(1), 247–267.
    [Google Scholar]
  50. MartinsC.M., LimaW.A., BarbosaV.C. and SilvaJ.B.2011. Total variation regularization for depth‐to‐basement estimate: part 1—Mathematical details and applications. Geophysics76(1), I1–I12.
    [Google Scholar]
  51. MeadJ. and HammerquistC.2013. χ^2 tests for the choice of the regularization parameter in nonlinear inverse problems. SIAM Journal on Matrix Analysis and Applications34(3), 1213–1230.
    [Google Scholar]
  52. MojicaO. and BassreiA.2015. Application of the Generalized Simulated Annealing Algorithm to the Solution of 2D Gravity Inversion of Basement Relief, paper presented at 3rd Latin American Geosciences Student Conference.
  53. MolinaroM., ZeyenH. and LaurencinX.2005. Lithospheric structure beneath the south‐eastern Zagros Mountains, Iran: recent slab break‐off?Terra Nova17(1), 1–6.
    [Google Scholar]
  54. Monteiro SantosF.A.2010. Inversion of self‐potential of idealized bodies’ anomalies using particle swarm optimization. Computers & Geosciences36(9), 1185–1190.
    [Google Scholar]
  55. Motavalli‐AnbaranS.‐H., ZeyenH. and ArdestaniV.E.2013. 3D joint inversion modeling of the lithospheric density structure based on gravity, geoid and topography data—Application to the Alborz Mountains (Iran) and South Caspian Basin region. Tectonophysics586, 192–205.
    [Google Scholar]
  56. Motavalli‐AnbaranS.‐H., ZeyenH. and JamasbA.2016. 3D crustal and lithospheric model of the Arabia–Eurasia collision zone. Journal of Asian Earth Sciences122, 158–167.
    [Google Scholar]
  57. Motavalli‐Anbaran, S.H., ZeyenH., BrunetM.F. and ArdestaniV.E.2011. Crustal and lithospheric structure of the Alborz Mountains, Iran, and surrounding areas from integrated geophysical modeling. Tectonics30(5).
    [Google Scholar]
  58. MumladzeT., ForteA.M., CowgillE.S., TrexlerC.C., NiemiN.A., YıkılmazM.B.et al. 2015. Subducted, detached, and torn slabs beneath the Greater Caucasus. GeoResJ5, 36–46.
    [Google Scholar]
  59. NagiharaS. and HallS.A.2001. Three‐dimensional gravity inversion using simulated annealing: constraints on the diapiric roots of allochthonous salt structures. Geophysics66(5), 1438–1449.
    [Google Scholar]
  60. NagyD., PappG. and BenedekJ.2000. The gravitational potential and its derivatives for the prism. Journal of Geodesy74(7–8), 552–560.
    [Google Scholar]
  61. PalleroJ., Fernández‐MartínezJ.L., BonvalotS. and FudymO.2015. Gravity inversion and uncertainty assessment of basement relief via particle swarm optimization. Journal of Applied Geophysics116, 180–191.
    [Google Scholar]
  62. PalleroJ., Fernández‐MartínezJ., BonvalotS. and FudymO.2017. 3D gravity inversion and uncertainty assessment of basement relief via particle swarm optimization. Journal of Applied Geophysics139, 338–350.
    [Google Scholar]
  63. PaulA., KavianiA., HatzfeldD., VergneJ. and MokhtariM.2006. Seismological evidence for crustal‐scale thrusting in the Zagros mountain belt (Iran). Geophysical Journal International166(1), 227–237.
    [Google Scholar]
  64. PaulA., HatzfeldD., KavianiA., TatarM. and PéquegnatC.2010. Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). Geological Society, London, Special Publications330(1), 5–18.
    [Google Scholar]
  65. PavlisN.K., HolmesS.A., KenyonS.C. and FactorJ.K.2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of geophysical research: solid earth117(B4).
    [Google Scholar]
  66. PortniaguineO. and ZhdanovM.S.1999. Focusing geophysical inversion images. Geophysics64(3), 874–887.
    [Google Scholar]
  67. RaoC.V., RajuM. and ChakravarthiV.1995. Gravity modelling of an interface above which the density contrast decreases hyperbolically with depth. Journal of applied geophysics34(1), 63–67.
    [Google Scholar]
  68. RaoD.B.1990. Analysis of gravity anomalies of sedimentary basins by an asymmetrical trapezoidal model with quadratic density function. Geophysics55(2), 226–231.
    [Google Scholar]
  69. ReifF.1965. Fundamentals of Statistical Mechanics, edited, Singapore: McGraw‐Hill.
    [Google Scholar]
  70. Rosas‐CarbajalM., LindeN., KalscheuerT. and VrugtJ.A.2013. Two‐dimensional probabilistic inversion of plane‐wave electromagnetic data: methodology, model constraints and joint inversion with electrical resistivity data. Geophysical Journal International196(3), 1508–1524.
    [Google Scholar]
  71. RudinL.I., OsherS. and FatemiE.1992. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena60(1), 259–268.
    [Google Scholar]
  72. SchildgenT., YıldırımC., CosentinoD. and StreckerM.2014. Linking slab break‐off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth‐Science Reviews128, 147–168.
    [Google Scholar]
  73. ŞengörA., ÖzerenS., GençT. and ZorE.2003. East Anatolian high plateau as a mantle‐supported, north‐south shortened domal structure. Geophysical Research Letters30(24).
    [Google Scholar]
  74. ShawR. and SrivastavaS.2007. Particle swarm optimization: a new tool to invert geophysical data. Geophysics72(2), F75–F83.
    [Google Scholar]
  75. ShiY. and EberhartR.1998. A modified particle swarm optimizer, paper presented at Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Conference on, IEEE.
  76. SilvaJ.B., SantosD.F. and GomesK.P.2014. Fast gravity inversion of basement relief. Geophysics79(5), G79–G91.
    [Google Scholar]
  77. SnyderD.B. and BarazangiM.1986. Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations. Tectonics5(3), 361–373.
    [Google Scholar]
  78. SrivastavaS. and AgarwalB.N.P.2010. Inversion of the amplitude of the two‐dimensional analytic signal of the magnetic anomaly by the particle swarm optimization technique. Geophysical Journal International182(2), 652–662.
    [Google Scholar]
  79. SunJ., LaiC.‐H. and WuX.‐J.2011. Particle Swarm Optimisation: Classical and Quantum Perspectives, CRC Press.
    [Google Scholar]
  80. SunJ., FangW., WuX., PaladeV. and XuW.2012. Quantum‐behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evolutionary computation20(3), 349–393.
    [Google Scholar]
  81. SunJ., XuW. and FengB.2004. A global search strategy of quantum‐behaved particle swarm optimization, paper presented at Cybernetics and Intelligent Systems, 2004 IEEE Conference on, IEEE.
  82. TikhomirovA.2010. On the convergence rate of the simulated annealing algorithm. Computational Mathematics and Mathematical Physics50(1), 19–31.
    [Google Scholar]
  83. VatankhahS., ArdestaniV.E. and RenautR.A.2015. Application of the χ2 principle and unbiased predictive risk estimator for determining the regularization parameter in 3‐D focusing gravity inversion. Geophysical Journal International200(1), 265–277.
    [Google Scholar]
  84. VogelC.R.2002. Computational methods for inverse problems, Siam.
  85. WesselP., SmithW.H., ScharrooR., LuisJ. and WobbeF.2013. Generic mapping tools: improved version released. Eos, Transactions American Geophysical Union94(45), 409–410.
    [Google Scholar]
  86. WilkenD. and RabbelW.2012. On the application of particle swarm optimization strategies on Scholte‐wave inversion. Geophysical Journal International190(1), 580–594.
    [Google Scholar]
  87. ZamaniA., SamieeJ. and KirbyJ.F.2013. Estimating the mechanical anisotropy of the Iranian lithosphere using the wavelet coherence method. Tectonophysics601, 139–147.
    [Google Scholar]
  88. ZeyenH. and PousJ.1993. 3‐D joint inversion of magnetic and gravimetric data with a priori information. Geophysical Journal International112(2), 244–256.
    [Google Scholar]
  89. ZhdanovM.S.2002. Geophysical Inverse Theory and Regularization Problems, Elsevier.
    [Google Scholar]
  90. ZhigljavskyA. and ŽilinskasA.2007. Stochastic Global Optimization, Springer Science & Business Media.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12558
Loading
/content/journals/10.1111/1365-2478.12558
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Gravity; Inverse problems; Modelling; Numerical study; Potential fields

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error