1887
Volume 65, Issue S1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In this paper, we present the uncertainty analysis of the 2D electrical tomography inverse problem using model reduction and performing the sampling via an explorative member of the Particle Swarm Optimization family, called the Regressive‐Regressive Particle Swarm Optimization. The procedure begins with a local inversion to find a good resistivity model located in the nonlinear equivalence region of the set of plausible solutions. The dimension of this geophysical model is then reduced using spectral decomposition, and the uncertainty space is explored via Particle Swarm Optimization. Using this approach, we show that it is possible to sample the uncertainty space of the electrical tomography inverse problem. We illustrate this methodology with the application to a synthetic and a real dataset coming from a karstic geological set‐up. By computing the uncertainty of the inverse solution, it is possible to perform the segmentation of the resistivity images issued from inversion. This segmentation is based on the set of equivalent models that have been sampled, and makes it possible to answer geophysical questions in a probabilistic way, performing risk analysis.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12559
2017-12-26
2024-04-19
Loading full text...

Full text loading...

References

  1. AlumbaughD.L. and NewmanG.A.1998. Image appraisal for 2D and 3D Electromagnetic Inversion. Society of Exploration Geophysicists, SEG Annual Meeting, 13‐18 September, New Orleans, Louisiana.
  2. AlumbaughD.L.2000. Linearized and nonlinear parameter variance estimation for two‐dimensional electromagnetic induction inversion. Inverse Problems, Volume 16, Issue 5, 1323–1341.
    [Google Scholar]
  3. AkaninyenA.O. and IgboekweM.U.2011. Monitoring Groundwater Contamination Using Surface Electrical Resistivity and Geochemical Methods. Journal of Water Resource and Protection, 3, 318–324.
    [Google Scholar]
  4. ArridgeS.R., KaipioJ.P., KolehmainenV., SchweigerM., SomersaloE., TarvainenT. and VauhkonenM.2006. Approximation errors and model reduction with an application in optical diffusion tomography. Inverse Problems, 22, 175–195.
    [Google Scholar]
  5. BensonA.K., PayneK.L. and StubbenM.A.1997. Mapping grandwater contamination using dc resistivity and VLF methods‐A case study. Geophysics, 62(1), 80–86.
    [Google Scholar]
  6. BodinT., SambridgeM., TkalčićH., ArroucauP., GallagherK. and RawlinsonN.2012. Transdimensional inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research, 117(B2).
    [Google Scholar]
  7. Peter‐BorieM., SirieixC., NaudetV. and RissJ.2011. Electrical resistivity monitoring with buried electrodes and cables: noise estimation with repeatability tests. Near Surface Geophysics, 2011, 9, 369–380. https://doi.org/10.3997/1873-0604.2011013
    [Google Scholar]
  8. BrooksB.A. and Neil FrazerL.2005. Importance reweighting reduces dependence on temperature in Gibbs samplers: an application to the coseismic geodetic inverse problem. Geophysical Journal International, 161(1), 12–20. https://doi.org/10.1111/j.1365-246X.2005.02573.x
    [Google Scholar]
  9. CarpenterP.J., KaufmannR.S. and PriceB.1990. Use of resistivity sounding to determine landfill structure. Ground Water Monit R. 28, 569–575.
    [Google Scholar]
  10. ChambersJ.E., KurasO., MeldrumP.I., OgilvyR.D. and HollandsJ.2006. Electrical resistivity tomography applied to geological, hydrogeological and engineering investigations at a former waste disposal site. Geophysics, 71, B231–B239.
    [Google Scholar]
  11. CiucivaraA. and WillenD.E.2014. Uncertainty estimation of subsurface resistivity solutions. US 2014/0358503A1 patent.
  12. CommerM. and NewmanG.A.2008. New advances in three‐dimensional controlled‐source electromagnetic inversion. Geophys. J. Int. 172, 513–535
    [Google Scholar]
  13. CurtisA. and LomaxA.2001. Tutorial prior information, sampling distributions, and the curse of dimensionality. Geophysics, 66(2), 372–378
    [Google Scholar]
  14. DossoS.E., HollandC.W. and SambridgeM.2012. Parallel tempering for strongly nonlinear geo‐acoustic inversion. The Journal of the Acoustical Society of America, 132(5), 3030–3040. https://doi.org/10.1121/1.4757639.
    [Google Scholar]
  15. GrayverA.V.2015. Parallel 3D magneto‐telluric inversion using adaptive finite‐element method. Part I: theory and synthetic study. Geophysical Journal International202 (1): 584–603.
    [Google Scholar]
  16. GüntherT., RückerC. and SpitzerK.2006. Three‐dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion. Geophys. J. Int.166, 506–517.
    [Google Scholar]
  17. Fernández‐ÁlvarezJ.P., Fernández‐MartínezJ.L. and Menéndez‐PérezC.O.2008. Feasibility analysis of the use of binary genetic algorithms as importance samplers application to a geoelectrical VES inverse problem. Mathematical Geosciences, 40 (34) , pp. 375–408.
    [Google Scholar]
  18. Fernández‐MartínezJ.L., García‐GonzaloE., ÁlvarezJ.P.F., KuzmaH.A. and Menéndez‐PérezC.O.2010: PSO: A Powerful Algorithm to Solve Geophysical Inverse Problems. Application to a 1D‐DC Resistivity Case. Journal of Applied Geophysics, Vol. 71‐1, pp.13–25.
    [Google Scholar]
  19. Fernández‐MartínezJ.L., MukerjiT., García‐GonzaloE. and Fernández‐MuñizZ.2011. Uncertainty assessment for inverse problems in high dimensional spaces using particle swarm optimization and model reduction techniques. Mathematical and Computer Modelling54 (11), 2889–2899.
    [Google Scholar]
  20. Fernández‐MartínezJ.L. and Garcia‐GonzaloE.2012. Stochastic stability and numerical analysis of two novel algorithms of the PSO family: PP‐GPSO and RR‐GPSO. International Journal on Artificial Intelligence Tools21 (03), 1240011.
    [Google Scholar]
  21. Fernández‐MartínezJ.L., Fernández‐MuñizM.Z. and TompkinsM.J.2012a. On the topography of the cost functional in linear and nonlinear inverse problems. Geophysics77 (1), W1–W15.
    [Google Scholar]
  22. Fernández‐MartínezJ.L., Fernández‐MuñizZ., PalleroJ.L.G. and Pedruelo‐GonzálezL.M.2013. From Bayes to Tarantola: New insights to understand uncertainty in inverse problems. Journal of Applied Geophysics, 98, 62–72.
    [Google Scholar]
  23. Fernández‐MartínezJ.L., PalleroJ.L.G., Fernández‐MuñizZ. and Pedruelo‐GonzálezL.2014a. The effect of noise and Tikhonov's regularization in inverse problems. Part I: The linear case. Journal of Applied Geophysics108, 176–185.
    [Google Scholar]
  24. Fernández‐MartínezJ.L., PalleroJ.L.G., Fernández‐MuñizZ. and Pedruelo‐GonzálezL.2014b. The effect of noise and Tikhonov's regularization in inverse problems. Part II: The nonlinear case. Journal of Applied Geophysics108, 186–193.
    [Google Scholar]
  25. Fernández‐MartínezJ.L.2014. High‐dimensional data analysis. US Patent 8688616B2.
  26. Fernández‐MartínezJ.L.2015. Model reduction and uncertainty analysis in inverse problems. The Leading Edge34 (9), 1006–1016.
    [Google Scholar]
  27. GenelleF., SirieixC., RissJ. and NaudetV.2012. Monitoring landfill cover by electrical resistivity tomography on an experimental site. Engineering Geology, 145‐146, 18–29.
    [Google Scholar]
  28. GunningJ., GlinskyM.E. and HedditchJ.2010. Resolution and uncertainty in 1D CSEM inversion: A Bayesian approach and open‐source implementation. Geophysics, 75(6), F151–F171.
    [Google Scholar]
  29. HansenP.C.1992. Analysis of discrete ill‐posed problems by means of the L‐curve. SIAM Review, 34, pp. 561–580.
    [Google Scholar]
  30. HansoK.M., CunninghamG.S. and McKeeR.J.1997. Uncertainties in tomographic reconstructions based on deformable models, Proc. SPIE 3034, 276–286.
  31. Jim YehT.C., LinS., GlassR.J., BakerK., BrainardJ.R., AlumbaughD. and LaBrecqueD.2002. A geostatically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology. Water Resources Research, 38 (12), 1278. https://doi.org/10.1029/2001WR001204.
    [Google Scholar]
  32. KennedyJ. and EberhartR.1995. Particle Swarm Optimization, Neural Networks. Proceedings., IEEE International Conference, 4, 1942–1948.
    [Google Scholar]
  33. LehikoinenA.2012. Modeling Uncertainties in Process Tomography and Hidrogeophysics. Publications of the University of Eastern Finland. Dissertations in Forestry and Natural Sciences, 82. ISBN: 978‐952‐61‐0883‐4.
  34. LochbuhlerT., BreenS.J., DetwilerR.L., VrugtJ.A. and LindeN.2014. Probabilistic electrical resistivity tomography of a CO2 sequestration analog. Journal of Applied Geophysics, 107, 80–92.
    [Google Scholar]
  35. LokeM.H.2004. Tutorial: 2‐D and 3‐D electrical imaging surveys, 136 p.
  36. MalinvernoA.2002. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical Journal International, 151(3), 675–688.
    [Google Scholar]
  37. ManginA.1975. Contribution à l'etude hydrodynamique des aquiferes karstiques. Annales de Spéléologie, 21–124.
    [Google Scholar]
  38. MastrociccoM., VignoliG., ColombaniN. and ZeidN.A.2010. Surface electrical resistivity tomography and hydrogeological characterization to constrain groundwater flow modeling in an agricultural field site near Ferrara (Italy). Environ. Earth. Sci., 61, 311–322.
    [Google Scholar]
  39. MetwalyM. and AlFouzanF.2013. Application of 2‐D geological resistivity tomography for surface cavity detection in the eastern part of Arabia Saudi. Geoscience Frontiers, 4(4), 469–476.
    [Google Scholar]
  40. MoghadasD., Taghizadeh‐MehrjardiR. and TriantafilisJ.2016. Probabilistic inversion of EM38 data for 3D soil mapping in central Iran. Geoderma Regional, 7(2), 230–238.
    [Google Scholar]
  41. PalleroJ.L.G., Fernández‐MartínezJ.L., BonvalotS. and FudymO.2015. Gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization. Journal of Applied Geophysics116, 180–191.
    [Google Scholar]
  42. PidliseckyA. and KnightR.2008. A MATLAB 2.5‐D electrical resistivity modeling code. Computers and Geosciences, 34, 1645–1654.
    [Google Scholar]
  43. PutiskaR., NicolajM., DostelI. and KusnirakD.2012. Determination of cavities using electrical resistivity tomography. Contributions to Geophysics and Geodesy, 42(2), 201–211.
    [Google Scholar]
  44. RayA., AlumbaughD.L., HoverstenG.M. and KeyK., 2013. Robust and accelerated Bayesian inversion of marine controlled‐source electromagnetic data using parallel tempering. Geophysics, 78(6), E271–E280.
    [Google Scholar]
  45. RayA., KeyK., BodinT., MyerD. and ConstableS.2014. Bayesian inversion of marine CSEM data from the Scarborough gas field using a transdimensional 2‐D parametrization. Geophysical Journal International, 199, 1847–1860.
    [Google Scholar]
  46. RayA., SekarA., HoverstenG. and AlbertinU.2016. Frequency domain full waveform elastic inversion of marine seismic data from the Alba field using a Bayesian trans‐dimensional algorithm. Geophys. J. Int., 205, 915–937.
    [Google Scholar]
  47. Rosas‐CarbajalM., LindeN., KalscheuerT. and VrugtJ.A.2013. Two‐dimensional probabilistic inversion of plane‐wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data. Geophysical Journal International, 196 (3), 1508–1524.
    [Google Scholar]
  48. ScalesJ.A. and SniederR.2000. The anatomy of inverse problems. Geophysics, 65(6), 1708–1710. https://doi.org/10.1190/geo2000-0001.1
    [Google Scholar]
  49. ScalesJ.A. and TenorioL.2001. Prior information and uncertainty in inverse problems. Geophysics, 66 (2), 389–397.
    [Google Scholar]
  50. SireixC., RissJ., ReyF., PrétouF. and LastennetR.2014. Electrical resistivity tomography to characterize a karstic Vauclusian spring: Fontaine d'Orbe (Pyrénées, France). Hydrogeol J., 22, 911–924.
    [Google Scholar]
  51. SteinhausH.1957. Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci., 4 (12), 801–804.
    [Google Scholar]
  52. TarantolaA.2006. Popper, Bayes and the inverse problem. Nature Physics, Vol. 2, p 492–494.
    [Google Scholar]
  53. TibshiraniR.1996. Regression Shrinkage and Selection via de Lasso. Journal of the Royal Statistical Society, Series B, 58, 1, 267–288.
    [Google Scholar]
  54. TompkinsM.J., Fernández‐MartínezJ.L. and Fernández‐MuñizZ.2011a. Marine electromagnetic inverse solution appraisal and uncertainty using model‐derived basis functions and sparse geometric sampling. Geophysical Prospecting59 (5), 947–965
    [Google Scholar]
  55. TompkinsM.J., Fernández‐MartínezJ.L., AlumbaughD.L., MukerjiT.2011b. Scalable uncertainty estimation for nonlinear inverse problems using parameter reduction, constraint mapping, and geometric sampling: Marine controlled‐source electromagnetic examples. Geophysics76 (4), F263–F281.
    [Google Scholar]
  56. TompkinsM.J., Fernández‐MartínezJ.L. and Fernández‐MuñizZ.2013. Comparison of sparse‐grid geometric and random sampling methods in nonlinear inverse solution uncertainty estimation. Geophysical Prospecting61 (1), 28–41.
    [Google Scholar]
  57. TompkinsM.J. and Fernández‐MartínezJ.L.2013. Uncertainty estimation for large‐scale nonlinear inverse problems using geometric sampling and covariance‐free model compression. US Patent Application 20130185033.
  58. VrugtJ.A., Ter BraakC.J.F., DiksC.G.H., RobinsonB.A., HymanJ.M. and HigdonD.2009. Accelerating Markov chain Monte Carlo simulation by differential evolution with self‐adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul.10 (3), 273–290.
    [Google Scholar]
  59. WolkeR. and SchwetlickH.1988. Iteratively reweighted least squares algorithms, convergence analysis, and numerical comparisons: SIAM. Journal of Scientific and Statistical Computations, 9, 907–921.
    [Google Scholar]
  60. XuS., SirieixC., FerrierC., LacanetteD., RissJ. and MalaurentP.2015. A geophysical tool for the conservation of a decorated cave: a case study for the Lascaux Cave. Archaeological Prospection, 22‐4, 283–292.
    [Google Scholar]
  61. XuS., SirieixC., MaracheA., RissJ. and MalaurentP.2016. 3D geostatistical modeling of Lascaux hill from ERT data. Engineering Geology, 213, 169–178.
    [Google Scholar]
  62. YangX., ChenX., CarriganC. and RamirezA.L.2014. Uncertainty quantification of CO2 saturation estimated from electrical resistance tomography data at the Cranfield site. International Journal of Greenhouse Gas Control27, 59–68.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12559
Loading
/content/journals/10.1111/1365-2478.12559
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 2D nonlinear inversion; Resistivity inversion; Uncertainty analysis

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error