1887
Volume 30, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The Danube Basin is situated between the Eastern Alps, Western Carpathians and Transdanubian mountain ranges and represents a classic petroleum prospection site. The basin fill is known from many 2D reflection seismic lines and deep wells with measured e‐logs which provided a good opportunity for theories about its evolution. New analyses of deep wells situated in the Danube Basin northeastern margin allowed us to refine stratigraphy and to interpret various depositional systems. This also allowed us to outline changes in provenance of sediment during the Cenozoic. The performed interpretation of the Palaeogene and Neogene depositional systems also confirmed the Oligocene–Early Miocene exhumation of the basin pre‐Neogene basement. Opening and development of the Middle to Late Miocene basin depocentres above the boundary between the Western Carpathians and Northern Pannonian domain was recognized. Our analysis contributed to a better understanding of the Hurbanovo–Diösjenő fault which acts as an inherited weakness zone along the boundary of two crustal fragments with different provenance. We document various basin types stacked one on another (retro‐arc, back‐arc and extensional hinterland basin). The analysis of sediment sources reveals intricate geodynamic processes during the Eastern Alpine–Western Carpathian orogenic system collision with European platform (formation of ALCAPA microplate) and its successive tectonics escape during the Pannonian Basin System origination.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12244
2017-05-29
2024-03-29
Loading full text...

Full text loading...

References

  1. Adam, Z. & Dlabač, M. (1969) An explanation of the map ticknesses and Danube Basin lithofacial evolution. Zborník geologických vied, Záp. Karpaty, 11, 156–172 (in Czech with German resumé).
  2. Andrejeva Grigorovič, A.S., Kováč, M., Halásová, E. & Hudáčková, N. (2001) Litho‐ and biostratigraphy of the Lower and Middle Miocene sediments of the Vienna basin (NE part) on the basis of calcareous nannoplankton and foraminifers. Scripta Facultatis scientiarum naturalium Universitas Masarykianae Brunensis, Geologia, 30, 27–40.
    [Google Scholar]
  3. Andrejeva‐Grigorovich, A.S., Kováč, M., Halásová, E., Hudáčková, N. & Zlinská, A. (2003a) Middle, Upper Miocene zonation of Ukraine and Slovak sediments based on calcareous nannoplankton and foraminifera. Theoretical and practical aspects of modern biostratigraphy of Ukraine Phanerozoic. UDK, Kyjev, 1–7 (in Russian).
  4. Andrejeva‐Grigorovich, A.S., Fordinál, K., Kováč, M. & Zlinská, A. (2003b) Occurence of calcareous nannoplankton in the Pannonian sediments of the Slovakian Neogene Basins. Acta Uni. Carol. Geol., 47, 33.
    [Google Scholar]
  5. Bakrač, K., Koch, G. & Sremac, J. (2012) Middle and Late Miocene palynological biozonation of the south‐western part of Central Paratethys (Croatia). Geol. Croatica, 65(2), 207–222.
    [Google Scholar]
  6. Báldi, T. (1986) Mid‐Tertiary Stratigraphy and Paleogeographic Evolution of Hungary, 201 pp. Akadémiai Kiadó, Budapest.
    [Google Scholar]
  7. Báldi, T. & Báldi Béke, M. (1985) The evolution of the Hungarian Paleogene basin. Acta Geol. Hungarica, 28, 5–28.
    [Google Scholar]
  8. Berggren, W.A., Kent, D.V., SwisherIII, C.C. & Aubry, M.‐P. (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Geochronology, Time Scales and Global Stratigraphic Correlation (Ed. by BerggrenW.A. , KentD.V. , AubryM.‐P. & HardenbolJ. ) Spec. Publ. SEPM (Soc. Sediment. Geol.), 54, 129–212.
    [Google Scholar]
  9. Biela, A. (1978) Deep drillings in the Western Carpathian basins. Reg. Geol. Záp. Karpaty, 10, 1–224.
    [Google Scholar]
  10. Biely, A., Bezák, V., Elečko, M., Gross, P., Kalinčiak, M., Konečný, V., Lexa, J., Mello, J., Nemčok, J., Potfaj, M., Rakús, M., Vass, D., Vozár, J. & Vozárová, A. (1996) Explanatory Notes to the Geological map of Slovakia (M 1: 500 000), 77 pp. MŽP SR a GS SR, Bratislava (in Slovak).
    [Google Scholar]
  11. BoggsJr, S. (2006) Principles of Sedimentology and Stratigraphy, 4th edn, 653 pp. Pearson Prentice Hall, Upper Saddle River, NJ.
    [Google Scholar]
  12. Bolli, H.M. & Saunders, J.B. (1985) Oligocene to Holocene low latitude planktonic foraminifera. In: Plankton Stratigraphy (Ed. by H.M.Bolli , J.B.Saunders & K.Perch‐Nielsen ), pp. 155–262. Cambridge Univ. Press, Cambridge.
    [Google Scholar]
  13. Buday, T., Cambel, B. & Maheľ, M. (Eds.) (1962) Explanatory Notes of the Geological map of ČSSR 1:200 000 (M‐33‐V a M‐33‐VI), pp. 5–247. Geofond, Bratislava (in Slovak).
    [Google Scholar]
  14. Catuneanu, O. (2006) Principles of Sequence Stratigraphy, 375 pp. Elsevier, Amsterdam.
    [Google Scholar]
  15. Cicha, I., Baldi, T., Brzobohatý, R., Bůžek, Č., Čtyroká, J., Fejfar, O., Gabrielová, N., Holý, F., Jiříček, R., Knobloch, E., Kvaček, Z., Lehotayová, R., Molčíková, V., Němejc, F., Planderová, E., Řeháková, Z., Seneš, J., Sitár, V., Slávik, J., Steininger, F., Švagrovský, J., Váňová, M., Vass, D. & Zapletalová, I. (1975) Biozonal Division of the Upper Tertiary Basins of the Eastern Alps and West Carphatians. I. U. G. S. Proccedings of the VI Congress, Bratislava.
  16. Cicha, I., Rögl, F., Rupp, C.H. & Čtyroká, J. (1998) Oligocene –Miocene Foraminifera of the central paratethys. Abh. Senckenberg. Nat. Ges., 549, 1–325.
    [Google Scholar]
  17. Ćorić, S. (2005) Endemic Sarmatian and Pannonian calcareous nannoplankton from the Central Paratethys. 12th Congress RCMNS, 6‐11, September 2005, Vienna, Abstract Volume, 53–54.
  18. Ćorić, S. & Gross, M. (2004) Kalkiges Nannoplankton aus dem Unter‐Pannonium des Oststeirischen Beckens (Osterreich). Joannea Geologie und Palaeontologie, 5, 9–18. (in German).
    [Google Scholar]
  19. Császár, G. (Ed.) (1997) Basic Lithostratigraphic Units of Hungary, 114 pp. Geological Institute of Hungary, Budapest.
    [Google Scholar]
  20. Császár, G., Pistotnik, J., Scharek, P., Kaiser, M., Pristaš, J., Horniš, J. & Halouzka, R. (1998) Danube Region Vienna‐Bratislava‐Budapest. Surface Geological map 1:100 000. ‐ DANREG (Danube Region Environmental Geology Programme). A Magyar Állami Földtani Intézet, Geological Institute of Hungary, Budapest.
    [Google Scholar]
  21. Csató, I. (1993) Neogene sequences in the Pannonian Basin, Hungary. Tectonophysics, 226, 377–400.
    [Google Scholar]
  22. Csató, I., Kendall, C.G. & Moore, P.D. (2007) The Messinian problem in the Pannonian Basin, Eastern Hungary — insights from stratigraphic simulations. Sediment. Geol., 201, 111–140.
    [Google Scholar]
  23. Csillag, G., Sztanó, O., Magyar, I. & Hámori, Z. (2010) Stratigraphy of the Kálla Gravel in Tapolca Basin based on multi‐electrode probing and well data. Földtani Közlöny, 140(2), 183–196. (in Hungarian with English abstract).
    [Google Scholar]
  24. Csontos, L. & Nagymarosy, A. (1998) The Mid‐Hungarian line: a zone of repeated tectonic inversions. Tectonophysics, 297, 51–71.
    [Google Scholar]
  25. Csontos, L., Nagymarosy, A., Horváth, F. & Kováč, M. (1992) Tertiary evolution of the intra‐Carpathian area: a model. Tectonophysics, 208, 221–241.
    [Google Scholar]
  26. Cziczer, I., Magyar, I., Pipík, R., Böhme, M., Ćorić, S., Bakrač, K., Sütő‐Szentai, M., Lantos, M., Babinszki, E. & Müller, P. (2009) Life in the sublittoral zone of long‐lived Lake Pannon: paleontological analysis of the Upper Miocene Szák Formation, Hungary. Int. J. Earth Sci., 98, 1741–1766.
    [Google Scholar]
  27. Danišík, M., Dunkl, I., Putiš, M., Frisch, W. & Kráľ, J. (2004) Tertiary burial and exhumation history of basement highs along the NW margin of the Pannonian Basin – an apatite fission track study. Aus. J. Earth Sci., 95(96), 60–70.
    [Google Scholar]
  28. Danišík, M., Kohút, M., Dunkl, I. & Frisch, W. (2008) Thermal evolution of the Žiar Mountains basement (Inner Western Carpathians, Slovakia) constrained by fission track data. Geol. Carpath., 59, 19–30.
    [Google Scholar]
  29. Di Stefano, A., Foresi, L.M., Lirer, F., Iaccarino, S.M., Turco, E., Amore, F.O., Mazzei, R., Morabito, S., Salvatorini, G. & AbdulAziz, H. (2008) Calcareous plankton high resolution bio‐magne‐tostratigraphy for the Langhian of the Mediterranean. Area. Riv. Ital. Paleont. Stratigr., 114, 51–76.
    [Google Scholar]
  30. Dropp, G.T.R. (1987) A general ayuation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag., 51, 431–435.
    [Google Scholar]
  31. Dunkl, I. & Demény, A. (1997) Exhumation of the Rechnitz Window at the border of the Eastern Alps and Pannonian Basin during Neogene extension. Tectonophysics, 272, 197–211.
    [Google Scholar]
  32. Dunkl, I., Kuhlemann, J., Reinecker, J. & Frisch, W. (2005) Cenozoic relief evolution of the Eastern Alps– constraints from apatite fission track age‐provenance of Neogene intramontane sediments. Aus. J. Earth Sci., 98, 92–105.
    [Google Scholar]
  33. Emery, D. & Mayers, K.J. (1996) Sequence Stratigraphy, 297 pp. Blackwell Science, Oxford.
    [Google Scholar]
  34. Faegri, K. & Iversen, J. (1989) Textbook of Pollen Analysis, 328 pp. The Blackburn Press, Caldwell, NJ.
    [Google Scholar]
  35. Filipescu, S. & Silye, L. (2008) New Paratethyan biozones of planktonic foraminifera described from the Middle Miocene of the Transylvanian Basin (Romania). Geol. Carpath., 59(6), 537–544.
    [Google Scholar]
  36. Fodor, L., Jelen, B., Márton, E., Skaberne, D., Čar, J. & Vrabec, M. (1998) Miocene‐Pliocene tectonic evolution of the Slovenian Periadriatic fault: implications for Alpine‐Carpathian extrusion models. Tectonics, 17(5), 690–709.
    [Google Scholar]
  37. Fonaciari, E., Di Stefano, A., Rio, D. & Negri, A. (1996) Middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region. Micropaleontology, 42(1), 37–63.
    [Google Scholar]
  38. Fordinál, K., Zlinská, A. & Halásová, E. (2002) Fauna and nannoflora of Badenian sediments in the Stupava HGP‐3 borehole (Slovak part of the Vienna Basin). In: Paleogeographical, Paleoecological, Paleoclimatical Development of Central Europe (Ed. by J.Michalík , N.Hudáčková , B.Chalupová & D.Starek ), Abstract Book, 5–7th June 2002, pp. 53–54. Institute of Geology, Slovak Academy of Science, Bratislava.
    [Google Scholar]
  39. Fornaciari, E. & Rio, D. (1996) Latest Oligocene to eariy middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region. Micropaleontology, 42(1), 1–36.
    [Google Scholar]
  40. Fülöp, J., Bresznyánszky, K. & Haas, J. (1987) The new map of the Pannonian basin basement in the Hungary. Acta Geol. Hungarica, 30, 1–2. Budapest, 3–20.
    [Google Scholar]
  41. Fusán, O., Biely, A., Ibrmajer, J., Plančár, J. & Rozložník, L. (1987) Basement of the Tertiary of the Inner West Carpathians, 103 pp. GÚDŠ, Bratislava.
    [Google Scholar]
  42. Gonera, M. (2013) Globorotaliid intervals of the sub‐evaporiteBadenian (Middle Miocene) in the Upper Silesia Basin (Central Paratethys, Poland). Geol. Q., 57(4), 757–768.
    [Google Scholar]
  43. Gradstein, F.M.
    , Ogg, J.G. , Schmitz, M.D. & Ogg, G.M. (eds.) (2012) The Geologic Time Scale 2012, 1139 pp. Elsevier, Oxford, UK.
    [Google Scholar]
  44. Grill, R. (1941) Stratigraphische Untersuchungen mit Hilfe von Mikrofaunen im Wiener Becken und den benachbarten Molasse–Anteilen. Oel u. Kohle, 37, 595–602. (in German).
    [Google Scholar]
  45. Haas, J. & Kovács, S. (2001) The Dinaridic‐Alpine connection ‐ as seen from Hungary. Acta Geol. Hungarica, 44, 345–362.
    [Google Scholar]
  46. Haas, J., Budai, T., Csontos, L., Fodor, L., Konrad, Gy. & Koroknai, B. (2014) Geology of the pre‐Cenozoic Basement of Hungary. Explanatory Notes for “Pre‐Cenozoic Geological map of Hungary” (1:500000), pp. 1–73. Geological and Geophysical Institute of Hungary, Budapest.
    [Google Scholar]
  47. Haq, B.U. & Shutter, S.R. (2008) A chronology of Paleozoic sea‐level changes. Science, 322, 64–68.
    [Google Scholar]
  48. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T.H., de Graciansky, P.‐C. & Vail, P.R. (1998) Mesozoic and Cenozoic Sequence Chronostratigraphic Framework of European Basins. In: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (Ed. by de GracianskyP.‐C. , HardenbolJ. , JacquinT.H. & VailP.R. ) SEPM Spec. Publ., 60, 3–13.
    [Google Scholar]
  49. Harzhauser, M. & Mandic, O. (2008) Neogene lake systems of Central and South‐Eastern Europe: faunal diversity, gradients and interrelations. Palaeogeogr. Palaeoclimatol. Palaeoecol., 260, 417–434.
    [Google Scholar]
  50. Harzhauser, M. & Piller, W. (2004) Integrated stratigraphy of the Sarmatian (Upper Middle Miocene)in the western Central Paratethys. Stratigraphy, 1, 65–86.
    [Google Scholar]
  51. Harzhauser, M. & Piller, W.E. (2007) Benchmark data of a changing sea. Palaeogeography, Palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol., 253, 8–31.
    [Google Scholar]
  52. Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. & Welch, M.D. (2012) Nomenclature of the amphibole supergroup. IMA Report, American Mineralogist, 97, 2031–2048.
  53. Hohenegger, J., Ćorić, S. & Wagreich, M. (2014) Timing of the middle miocene Badenian stage of the central paratethys. Geol. Carpath., 65 (1), 55–66.
    [Google Scholar]
  54. Holcová, K. (1997) Can detailed sampling and taphonomical analysis of foraminiferal assemblages offer new data for paleoecological interpretations?Rev. Micropaléontol., 40(4), 313–329.
    [Google Scholar]
  55. Holcová, K. (1999) Postmortem transport and resedimentation of foraminiferal tests: relations to cyclical changes of foraminiferal assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol., 145, 157–182.
    [Google Scholar]
  56. Holcová, K. & Demeny, A. (2012) The oxygen and carbon isotopic composition of Langhian foraminiferal tests as a paleoecological proxy in a marginal part of the Carpathian Foredeep (Czech Republic). Geol. Carpath., 63(2), 121–137.
    [Google Scholar]
  57. Horváth, F. (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics, 226, 333–357.
    [Google Scholar]
  58. Horváth, F. & Cloetingh, S. (1996) Stress‐induced late‐state subsidence anomalies in the Pannonian Basin. Tectonophysics, 266, 287–300.
    [Google Scholar]
  59. Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A., Nádor, A., Koroknai, B., Pap, N., Tóth, T. & Wórum, G. (2015) Evolution of the Pannonian basin and its geothermal resources. Geothermics, 53, 328–352.
    [Google Scholar]
  60. Hrušecký, I. (1999) Central part of the Danube Basin in Slovakia: geophysical and geological model in regard to hydrocarbon prospection. EGRSE Spec. Issue, 6 (1), 2–55.
    [Google Scholar]
  61. Iaccarino, S., di Stefano, A.M., Foresi, L.M., Turco, E., Baldassini, N., Cascella, A., da Prato, S., Ferraro, L., Gennari, R., Hilgen, F.J., Lirer, F., Maniscalco, R., Mazzei, R., Riforgiato, F., Russo, B., Sagnotii, L., Salvatorini, G., Speranza, F. & Verducci, M. (2011) High–resolution integrated stratigraphy of the upper Burdigalian–lower Langhian in the Mediterranean: the Langhian historical stratotype and new candidate sections for defining its GSSP. Stratigraphy, 8, 199–215.
    [Google Scholar]
  62. Jamrich, M. & Halásová, E. (2010) The evolution of the Late Badenian calcareous nannofossil assemblages as a reflexion of the palaeoenvironmental changes of the Vienna Basin (Devínska Nová Ves – clay pit). Acta Geol. Slovaca, 2(2), 123–140. (in Slovak).
    [Google Scholar]
  63. Jiménez‐Moreno, G., Head, M.J. & Harzhauser, M. (2006) Early and middle miocene dinoflagellate cyst stratigraphy of the Central Paratethys, Central Europe. J. Micropalaeontol., 25, 113–139.
    [Google Scholar]
  64. Juhász, G. (1991) Lithostratigraphical and sedimentological framework of the Pannonian (s.l.) sedimentary sequence in the Hungarian Plain (Alföld), Eastern Hungary. Acta Geol. Hung., 34, 53–72.
    [Google Scholar]
  65. Juhász, G., Pogácsás, G., Magyar, I. & Vakarcs, G. (2007) Tectonic versus climatic control on the evolution of fluvio‐deltaic systems in a lake basin, Eastern Pannonian Basin. Sed. Geol., 202, 72–95.
    [Google Scholar]
  66. Kázmér, M., Dunkl, I., Frisch, W., Kuhlemann, J. & Ozsvárt, P. (2003) The Palaeogene forearc Basin of the Eastern Alps and Western Carpathians: subduction erosion and basin evolution. J. Geol. Soc., 160, 413–428.
    [Google Scholar]
  67. Kennett, J.P. & Srinivasan, M.S. (1983) Neogene Planktonic Foraminifera: A Phylogenetic Atlas. Stroudsburg, PA (Hutchinson Ross).
  68. Kilényi, E. & Šefara, J. (Eds.) (1989) Pre‐Tertiary Basement Contour map of the Carpathian Basin Beneath Austria, Czechoslovakia and Hungary. Eötvös Lóránd Geophysical Institute, Budapest.
    [Google Scholar]
  69. Klučiar, T., Kováč, M., Vojtko, R., Rybár, S., Šujan, M. & Králiková, S. (2016) The Hurbanovo‐Diösjenő Fault: a crustal‐scale weakness zone at the boundary between the Central Western Carpathians and Northern Pannonian Domain. Acta Geol. Slovaca, 8(1), 59–70.
    [Google Scholar]
  70. Konečný, V., Kováč, M., Lexa, J. & Šefara, J. (2002) Neogene evolution of the Carpatho‐Pannonian Region: an interplay of subduction and back‐arc diapiric uprise in the mantle. EGS Stephan Mueller Spec. Publ., 1, 105–123.
    [Google Scholar]
  71. Koubová, I. & Hudáčková, N. (2010) Foraminiferal successions in the shallow water Sarmatian sediments from the MZ 93 borehole (Vienna Basin, Slovak part). Acta Geol. Slovaca, 2(1), 47–58.
    [Google Scholar]
  72. Kováč, M. (2000) Geodynamic, Palaeogeographical and Structural Evolution of the Carpathian‐Pannonian Region During the Miocene, 202 pp. VEDA, Bratislava. (in Slovak).
    [Google Scholar]
  73. Kováč, M., Baráth, I., Holický, I., Marko, F. & Túnyi, I. (1989) Basin opening in the Lower Miocene strike‐slip zone in the SW part of the Western Carpathians. Geol. Carpath., 40, 37–62.
    [Google Scholar]
  74. Kováč, M., Michalik, J., Plašienka, D. & Putiš, M. (1991) Malé Karpaty Mts. Geology of the Alpine‐Carpathian Junction, Excursion Guide, Bratislava, 61–74.
  75. Kováč, M., Nagymarosy, A., Soták, J. & Šutovská, K. (1993) Late Tertiary paleogeographic evolution of the Western Carpathians. Tectonophysics, 226, 40–417.
    [Google Scholar]
  76. Kováč, M., Král, J., Márton, E., Plašienka, D. & Uher, P. (1994) Alpine uplift history of the Central Western Carpathians: geochronological, paleomagnetic, sedimentary and structural data. Geol. Carpath., 45, 83–96.
    [Google Scholar]
  77. Kováč, M., Baráth, I. & Nagymarosy, A. (1997) The Miocene collapse of the Alpine – Carpathian –Pannonian junction: an overview. Acta Geol. Hungarica, 40(3), 241–264.
    [Google Scholar]
  78. Kováč, M., Baráth, I., Kováčová – Slamková, M., Pipík, R., Hlavatý, I. & Hudáčková, N. (1998) Late Miocene paleoenvironments and sequence stratigraphy: Northern Vienna Basin. Geol. Carpath., 49/9, 445–449.
    [Google Scholar]
  79. Kováč, M., Baráth, I., Fordinál, K., Grigorovich, A.S., Halásová, E., Hudáčková, N., Joniak, P., Sabol, M., Slamková, M., Sliva, Ľ., Töröková, I. & Vojtko, R. (2006) Late Miocene to Early Pliocene sedimentary environments and climatic changes in the Alpine – Carpathian – Pannonian junction area: a case study from the Danube Basin northern margin (Slovakia). Palaeogeogr. Palaeoclimatol. Palaeoecol., 238(1–4), 32–52.
    [Google Scholar]
  80. Kováč, M., Andreyeva‐Grigorovich, A., Bajraktarević, Z., Brzobohatý, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelić, D., Rögl, F., Saftić, B., Sliva, Ľ. & Studencka, B. (2007) Badenian evolution of the Central Paratethys Sea: palaeogeography, climate and eustatic sea‐level changes. Geol. Carpath., 58(6), 579–606.
    [Google Scholar]
  81. Kováč, M., Andreyeva‐Grigorovič, A., Baráth, I., Beláčková, K., Fordinál, K., Halásová, E., Hók, J., Hudáčková, N., Chalupová, B., Kováčová, M., Sliva, Ľ. & Šujan, M. (2008) Lithological, sedimentological and biostratigraphical analysis of the ŠVM‐1 Tajná borehole. Geol. Práce, Správy, 114, 51–84. (in Slovak with English abstract).
    [Google Scholar]
  82. Kováč, M., Synak, R., Fordinál, K., Joniak, P., Tóth, C., Vojtko, R., Nagy, A., Baráth, I., Maglay, J. & Minár, J. (2011) Late Miocene and Pliocene history of the Danube Basin: inferred from development of depositional systems and timing of sedimentary facies changes. Geol. Carpath., 62(6), 519–534.
    [Google Scholar]
  83. Kováč, M., Plašienka, D., Soták, J., Vojtko, R., Oszczypko, N., Less, G.Y., Ćosović, V., Fügenschuh, B. & Králiková, S. (2016) Palaeogene palaeogeography and basin evolution of the Western Carpathians: a case study within the scope of the ALCAPA terrane. Global Planet. Change, 140, 9–27.
    [Google Scholar]
  84. Kováčová, P. & Hudáčková, N. (2009) Late Badenian foraminifers from the Vienna Basin (Central Paratethys): stable isotope study and paleoecological implications. Geol. Carpath., 60(1), 59–70.
    [Google Scholar]
  85. Kováčová, M., Doláková, N. & Kováč, M. (2011) Miocene vegetation pattern and climate change in the northwestern Central Paratethys domain (Czech and Slovak Republic). Geol. Carpath., 62(3), 251–266.
    [Google Scholar]
  86. Králiková, S., Vojtko, R., Andriessen, P., Kováč, M., Fügenschuh, B., Hók, J. & Minár, J. (2014) Late Cretaceous‐Cenozoic thermal evolution of the northern part of the Central Western Carpathians (Slovakia): revealed by zircon and apatite fission track thermochronology. Tectonophysics, 615–616, 142–153.
    [Google Scholar]
  87. Kuhlemann, J. (2007) Paleogeographic and paleotopographic evolution of the Swiss and Eastern Alps since the Oligocene. Global Planet. Change, 58, 224–236.
    [Google Scholar]
  88. Kvaček, Z., Kováč, M., Kovar‐Eder, J., Doláková, N., Jechorek, H., Parashiv, V., Kováčová, M. & Sliva, Ľ. (2006) Miocene evolution of landscape and vegetation in the Central Paratethys. Geol. Carpath., 57(4), 295–310.
    [Google Scholar]
  89. Lankreijer, A., Kováč, M., Cloetingh, S., Pitonák, P., Hlôška, M. & Biermann, C. (1995) Quantitative subsidence analysis and forward modelling of the Vienna and Danube Basins: thin skinned versus thick skinned extension. Tectonophysics, 252, 433–451.
    [Google Scholar]
  90. Leever, K.A., Matenco, L., Garcia‐Castellanos, D. & Cloetingh, S.A.P.L. (2010) The evolution of the Danube gateway between Central and Eastern Paratethys (SE Europe): insight from numerical modelling of the causes and effects of connectivity between basins and its expression in the sedimentary record. Tectonophysics, 502, 175–195.
    [Google Scholar]
  91. Lexa, J., Konečný, V., Kaličiak, M. & Hojstričová, V. (1993) Space‐time distribution of volcanics in the Carpatho‐Pannonian region. In: Geodynamic Model and Deep Structure of the Western Carpathians (Ed. by M.Rakús & J.Vozár ), pp. 57–70. Geological Survey of Slovak Republic, GÚDŠ, Bratislava (in Slovak).
    [Google Scholar]
  92. Loeblich, A.L. & Tappan, H. (1992) Present status of Foraminiferal classifications, in studies in benthic foraminifera. In: Proceedings of the 4th International Symposium on Benthic Foraminifera, Sendai, 1990 (Benthos'90) (Ed. by Y.Takayangi , T.Saito ), pp. 93–102. Tokai University Press, Tokyo, Japan.
    [Google Scholar]
  93. Lulyeva, S.A. (1989) New Miocene and Pliocene calcareous nannofossils of the Ukraine. Dopovidi Akad. Nauk Ukrainskoi RSR Ser. B. – Geol. Khim. ta Bioi. Nauki, 1, 10–14.
    [Google Scholar]
  94. Magyar, I. (2009) Pannonian Basin Paleogeography and Paleoenvironments During Late Miocene Based on Paleontology and Seismic Interpretation. GeoLitera, Szeged, 7–134. (in Hungarian).
    [Google Scholar]
  95. Magyar, I., Geary, D.H. & Müller, P. (1999a) Paleogeograhic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol., 147, 151–167.
    [Google Scholar]
  96. Magyar, I., Geary, D.H., Sűtő‐Szentai, M., Lantos, M. & Müller, P. (1999b) Integrated bio‐, magneto‐ and chronostratigraphic correlations of the Late Miocene Lake Pannon deposits. Acta Geol. Hungarica, 42(1), 5–31.
    [Google Scholar]
  97. Magyar, I., Müller, P., Geary, D.H., Sanders, H.C. & Tari, G. (2000) Diachronous deposits of Lake Pannon in the Kisalföld basin reflect basin and mollusc evolution. Abh. Geol. Bundesanst., 56, 669–678.
    [Google Scholar]
  98. Magyar, I., Lantos, M., Ujszászi, K. & Kordos, L. (2007) Magnetostratigraphic, seismic and biostratigraphic correlations of the Upper Miocene sediments in the northwestern Pannonian Basin System. Geol. Carpath., 58(3), 277–290.
    [Google Scholar]
  99. Magyar, I., Radivojević, D., Sztanó, O., Synak, R., Ujszászi, K. & Pócsik, M. (2013) Progradation of the paleo‐Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global Planet. Change, 103, 168–173.
    [Google Scholar]
  100. Majcin, D., Kutaš, R., Bilčík, D., Bezak, V. & Korchagin, I. (2016) Thermal conditions for geothermal energy exploitation in the Transcarpathian depression and surrounding units. Contributions Geophys. Geodesy, 46(1), 33–49.
    [Google Scholar]
  101. Marko, F., Plašienka, D. & Fodor, L. (1995) Meso‐Cenozoic tectonic stress fields within the Alpine‐Carpathian transition zone: a review. Geol. Carpath., 46(1), 19–27.
    [Google Scholar]
  102. Marko, F., Vojtko, R., Plašienka, D., Sliva, Ľ., Jablonský, J., Reichwalder, P. & Starek, D. (2005) A contribution to the tectonics of the Periklippen zone near Zázrivá (Western Carpathians). Slovak Geol. Mag., 11(1), 37–43.
    [Google Scholar]
  103. Martini, E. (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proc. of 2nd Planktonic Conference, Roma, 1970, 739–785.
  104. Marunteanu, M. (1997) Pannonian Nannoplankton Zonation. International Symposium Geology in the Danube Gorges. Geologija derdapa, Orszova, 263–265
  105. Matenco, L., Andriessen, P. & the SourceSink Network (2013) Quantifying the mass transfer from mountain ranges to deposition in sedimentary basins: source to sink studies in the Danube Basin–Black Sea system. Global Planet. Change, 103, 1–18.
    [Google Scholar]
  106. Mattick, R.E., Teleki, P.G., Phillips, R.L., Clayton, J., David, G., Pogácsás, G., Bardócz, B. & Simon, E. (1996) Structure, stratigraphy and Petroleum Geology of the Little Plain Basin, northwestern Hungary. AAPG Bull., 80(11), 1780–1800.
    [Google Scholar]
  107. Miall, A.D. (2010) The Geology of Stratigraphic Sequences, 1st edn, 433 pp. Springer, Heidelberg.
    [Google Scholar]
  108. Moore, P.D., Webb, J.A. & Collinson, M.E. (1991) Pollen Analysis, 216 pp. Blackwell Science Ltd., Oxford.
    [Google Scholar]
  109. Morimoto, N. (1988) Nomenclature of pyroxenes. Am. Miner., 73, 1123–1133.
    [Google Scholar]
  110. Nagy, E. (1999) Palynological Correlation of the Neogene of the Central Paratethys, 126 pp. Geological Institute of Hungary, Budapest.
    [Google Scholar]
  111. Nagy, E. (2005) Palynological evidence for Neogene climatic change in Hungary. Occasional Papers of the Geological Institute of Hungary, 25, Budapest, 120.
  112. Nagy, E. & Planderová, E. (1985) Palynologische Auswertung der Floren des Pannonien. In: Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys (Ed. by A. Papp , A.Jámbor & F.Steininger ), Bd. VII, M6 Pannonien (Slavonien und Serbien), Akadémiai Kiadó, pp. 586–615. Verlag der Ungarischen Akademie der Wissenschaften, Budapest (in German).
    [Google Scholar]
  113. Nagy, A., Halouzka, R., Konečný, V., Lexa, J., Fordinál, K., Havrila, M., Vozár, J., Liščák, P., Stolár, M., Benková, K. & Kubeš, P. (1998) Explanatory Notes to the Geological map of the East Part of Danube Basin 1:50 000, 187 pp. Geological Survey of Slovak Republic, ŠGÚDŠ, Bratislava (in Slovak).
    [Google Scholar]
  114. Nagymarosy, A. (2000) Lower Oligocene nannoplankton in anoxic deposits of the central Paratethys. INA8 ‐ International Nannoplankton Association, University of Bremen, Germany; web: ina.tmsoc.org/announce/ina8/abstr_n01.html
  115. Nichols, G. (2006) Sedimentology and Stratigraphy, 419 pp. Wiley‐Blackwell, Chichester.
    [Google Scholar]
  116. Oszczypko‐Clowes, M. (1998) Late Eocene ‐ Early Oligocene calcareous nannoplankton and stable isotopes (δ13 C, δ18 O) of the Globigerina Marls in the Magura Nappe (West Carpathians). Slovak Geol. Mag., 4(2), 95–107.
    [Google Scholar]
  117. Oszczypko‐Clowes, M. & Żydek, B. (2012) Paleoecology of the Late Eocene Early Oligocene Malcov Basin based on the calcareous nannofossils – a case study of the Leluchów section (Krynica Zone, Magura Nappe, Polish Outer Carpathians). Geol. Carpath., 63(2), 149–164.
    [Google Scholar]
  118. Papp, A. (1951) Das Pannon des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in Wien, ‐39–41, 99–193 (in German).
  119. Patterson, R.T., Fowler, A.D. & Huber, B.T. (2004) Evidence of hierarchical organization in the planktic foraminiferal evolutionary record. J. Foramin. Res., 34(2), 85–95.
    [Google Scholar]
  120. Pearce, J.A. (1996) A User′s Guide to Basalt Discrimination Diagrams. In: Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration (Ed. by WymanD.A. ) Geol. Assoc Canada Short Course Notes, 12, 79–113.
    [Google Scholar]
  121. Pécskay, Z., Lexa, J., Szakacs, A., Seghedi, I., Balogh, K., Konečný, V., Zelenka, T., Kovacs, M., Poka, T., Fulop, A., Márton, E., Panaiotu, C. & Cvetkovic, V. (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra‐Carpathian area. Geol. Carpath., 57(6), 511–530.
    [Google Scholar]
  122. Pelech, O., Soták, J. & Hók, J. (2012) Geological setting of the Patrovec block in the Považský Inovec Mts. Western Carpathians. Mineralia Slovaca, 44, 231–240.
    [Google Scholar]
  123. Pelech, O., Hók, J., Pešková, I. & Havrila, M. (2016) Structural position of the Upper Cretaceous sediments in the Považský Inovec Mts. (Western Carpathians). . Acta Geologica Slovaca, 8 (1), 43–58.
    [Google Scholar]
  124. Perch‐Nielsen, K. (1985) Cenozoic calcareous nannofossils. In: Plankton Stratigraphy (Ed. by H.M.Bolli , J.B.Saunders , K.Perch‐Nielsen ), pp. 427–555. Cambridge University Press, Cambridge.
    [Google Scholar]
  125. Pešková, I., Vojtko, R., Starek, D. & Sliva, Ľ. (2009) Late Eocene to Quaternary deformation and stress field evolution of the Orava region (Western Carpathians). Acta Geol. Pol., 59(1), 73–91.
    [Google Scholar]
  126. Piller, W., Harzhauser, M. & Mandic, O. (2007) Miocene Central Paratethys stratigraphy – current status and future directions. Stratigraphy, 4, 151–168.
    [Google Scholar]
  127. Planderová, E. (1990) Miocene Microflora of Slovak Central Paratethys and its Biostratigraphical Significance, 144 pp. Geological Institute of Dionýz Štúr, Bratislava.
    [Google Scholar]
  128. Popov, S.V.
    , Rögl, F. , Rozanov, A.Y. , Steinninger, F.F. , Shcherba, I.G. & Kováč, M. (eds.) (2004) Lithologicalpaleogeographic maps of Paratethys. 10 Maps Late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg, 250, 1–46.
    [Google Scholar]
  129. Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L. & Hilgen, F.J. (2006) A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quatern. Sci. Rev., 25, 3113–3137.
    [Google Scholar]
  130. Raischenbacher, D., Rifelj, H., Sachsenhofer, R., Jelen, B., Ćorić, S., Gross, M. & Reichenbacher, B. (2007) Early Badenian paleoenvironment in the Lavanttal Basin (Mühldorf Formation; Austria): evidence from geochemistry and paleontology. Aus. J. Earth Sci., 100, 202–229.
    [Google Scholar]
  131. Rasser, M.W., Harzhauser, M., Anistratenko, O., Anistratenko, V.V., Bassi, D., Belak, M., Berger, J.‐P., Bianchini, G., Čičič, S., Osovič, V., Doláková, N., Drobne, K., Filipescu, S., Karl Gurs, K., Hladilová, Š., Hrvatovič, H., Jelen, B., Kasinski, J.R., Kováč, M., Kralj, P., Marjanac, T., Márton, E., Mietto, P., Moro, A., Nagymarosy, A., Nebelsick, J.H., Nehyba, S., Ogorelec, B., Oszczypko, N., Pavelič, D., Pavlovec, R., Pavšič, J., Petrova, P., Piwocki, M., Poljak, M., Pugliese, N., Redžepovič, R., Rifelj, H., Roetzel, R., Skaberne, D., Sliva, Ľ., Standke, G., Tunis, G., Vass, D., Wagreich, M. & Wesselingh, F. (2008) Paleogene and Neogene. In: The Geology of Central Europe, Vollume 2: Mesozoic and Cenozoic (Ed. by McCanntT. ) Geol. Soc. London, 2, 1031–1141.
    [Google Scholar]
  132. Rider, M. (1986) Geological Interpretation of Well Logs, 280 pp. Rider French Consulting Ltd., Aberdeen and Sutherland.
    [Google Scholar]
  133. Rögl, F. (1998) Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien, 99A, 279–310.
    [Google Scholar]
  134. Royden, L.H. & Horváth, F. (Eds.) (1988) The Pannonian Basin. A Study in Basin Evolution. AAPG, Memoir 45, Tulsa, 394 pp.
  135. Rybár, S., Halásová, E., Hudáčková, N., Kováč, M., Kováčová, M., Šarinová, K. & Šujan, M. (2015) Biostratigraphy, sedimentology and palaeoenvironmens of the northern Danube Basin: Ratkovce 1 well case study. Geol. Carpath., 66(1), 51–67.
    [Google Scholar]
  136. Sacchi, M. & Horváth, F. (2002) Towards a newtime scale for the UpperMiocene continental series of the Pannonian basin (Central Paratethys). In: Neotectonics and Surface Processes: The Pannonian Basin and Alpine/Carpathian System. European Geoscience Union (Ed. by CloetinghS.A.P.L. , HorváthF. , BadaG. & LankreijerA.C. ) Stephan Mueller Spec. Publ. Series, 3, 79–94.
    [Google Scholar]
  137. Schlögl, J., Chirat, R., Balter, V., Joachimski, M., Hudáčková, N. & Quillévéré, F. (2011) Aturia from the Miocene Paratethys: an exceptional window on nautilid habitat and lifestyle. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 330–338.
    [Google Scholar]
  138. Sprovieri, R., Bonomo, S., Caruso, A., Di Stefano, A., Di Stefano, E., Foresi, L.M., Iaccarino, S.M., Lirer, F., Mazzei, R. & Salvatorini, G. (2002) An integrated calcareous plancton biostratigraphic scheme and bio‐chronology for the Mediterranean Middle Miocene. In: Integrated Stratigraphy and Paleoceanography of the Mediterranean Middle Miocene (Ed. by IaccarinoS. ) Riv. It. Paleont. Strat., 108, 337–353.
    [Google Scholar]
  139. Šujan, M., Kováč, M., Rybár, S. & Šarinová, K. (2015) Statistical analysis of the Late Miocene sequences on the southeastern Danube Basin margin based on borehole data. In: XVIth International Conference of Young Geologists (Herľany, Slovakia) (Ed. by MajkaJ. & ZahradníkováB. ) Geol. Geophys. Environ., 16, 140–141.
    [Google Scholar]
  140. Šujan, M., Braucher, R., Kováč, M., Bourlès, D.L., Rybár, S., Guillou, V. & Hudáčková, N. (2016) Application of the authigenic 10Be/9Be dating method to Late Miocene ‐ Pliocene sequences in the northern Pannonian Basin System: confirmation of heterochronous evolution of sedimentary environments. Global Planet. Change, 137, 35–53.
    [Google Scholar]
  141. Sütő‐Szentai, M. (1988) Microplankton zones of organic skeleton in the Pannonian s.l. stratum complex and in the upper part of the Sarmatian strata. Acta Botanica Hungarica, 34/3–4, 339–356.
  142. Sütő‐Szentai, M. (1990) Mikroplanktonflora der pontischen (oberpannonischen) Bildungen Ungarns. Chronostratigraphie und Neostratotypen Pl1 Pontien, Editura Academiei Române, Bucuresti, 832–869 (in German).
  143. Sütő‐Szentai, M. (2000) Organic walled microplankton zonation of the Pannonian s.l. in the surroundings of Kaskantyú, Paks and Tengelic (Hungary). Ann. Rep. Hungarian Geol. Institute, 1994–1995, 153–175.
    [Google Scholar]
  144. Sütő‐Szentai, M. (2011) Pannonian dinoflagellate associations from boreholes Egerág No. 7 and Bosta No. 1 (Southern Hungary). e‐Acta Naturalia Pannonica 2, 111–133. (In Hungarian with English abstract).
  145. Szádecky‐Kardoss, E. (1938) Geologie der rumpfungarländischen Kleinen Tiefebene. Mitt Berg‐Hüttenm Abt Univ Sopron, 10/2, Sopron, p. 441 (in German).
  146. Sztanó, O. (1994) The tide‐influenced Pétervására sandstone, Early Miocene, Northern Hungary: sedimentology, paleogeography and basin development. Geol. Ultraiect., 120, 1–153.
    [Google Scholar]
  147. Sztanó, O., Szafián, P., Magyar, I., Horányi, A., Bada, G., Hughes, D.W., Hoyer, D.L. & Wallis, R.J. (2013a) Aggradation and progradation controlled clinothems and deep‐water sand delivery model in the Neogene Lake Pannon, Makó Trough, Pannonian Basin, SE Hungary. Global Planet. Change, 103, 149–167.
    [Google Scholar]
  148. Sztanó, O., Magyar, I., Szónoky, M., Lantos, M., Müller, P., Lenkey, L., Katona, L. & Csillag, G. (2013b) Tihany Formation in the surroundings of Lake Balaton: type locality, depositional setting and stratigraphy. Földtani Közlöny, 143(1), 73–98. (in Hungarian with English abstract).
    [Google Scholar]
  149. Sztanó, O., Kováč, M., Magyar, I., Šujan, M., Fodor, L., Uhrin, A., Rybár, S., Csillag, G. & Tőkés, L. (2016) Late Miocene sedimentary record of the Danube / Kisalföld Basin: interregional correlation of depositional systems, stratigraphy and structural evolution. Geol. Carpath., 67(6), 525–542.
    [Google Scholar]
  150. Tari, G. (1996) Neoalpine tectonics of the Danube Basin (NW Pannonian Basin, Hungary). In: PeriTethys Memoir 2: Sturcture and Prospects of Alpine Basins and Forelands (Ed. by ZieglerP.A. & HorvathF. ) Memoires du Museum National d'Histoire Naturelle, 170, 439–454.
    [Google Scholar]
  151. Tari, G., Horváth, F. & Rumpler, J. (1992) Styles of extension in the Pannonian Basin. Tectonophysics, 208, 203–219.
    [Google Scholar]
  152. Tari, G., Báldi, T. & Báldi‐Béke, M. (1993) Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin: a geodynamic model. Tectonophysics, 226, 433–456.
    [Google Scholar]
  153. Ter Borgh, M., Vasiliev, I., Stoica, M., Knežovič, S., Matenco, L., Krijgsman, W., Rundič, L.J. & Cloething, S. (2013) The isolation of the Pannonian basin (Central Paratethys): new constraints from magneto‐ and biostratigraphy. Global Planet. Change, 103, 99–118.
    [Google Scholar]
  154. Turco, E., Iaccarino, S.M., Foresi, L.M., Salvatorini, G., Riforgiato, F. & Verducci, M. (2011) Revisiting the taxonomy of the intermediate stages in the Globigerinoides – Praeorbulina lineage. Stratigraphy, 8, 163–187.
    [Google Scholar]
  155. Uhrin, A. & Sztanó, O. (2011) Water‐level changes and their effect on deepwater sand accumulation in a lacustrine system: a case study from the Late Miocene of western Pannonian Basin, Hungary. Int. J. Earth Sci. (Geol. Rundsch.), 101, 1427–1440.
    [Google Scholar]
  156. Uhrin, A., Magyar, I. & Sztanó, O. (2009) Control of the Late Neogene (Pannonian s.l.) sedimentation by basement deformation in the Zala Basin. Földtani Közlöny, 139, 273–282. (in Hungarian, with English abstract).
    [Google Scholar]
  157. Ustaszewski, K., Schmid, S.M., Fügenschuh, B., Tischler, M., Kissling, E. & Spakman, W. (2008) A map‐view restoration of the Alpine‐Carpathian‐Dinaridic system for the Early Miocene. Swiss J. Geosci., 101 (Suppl. 1), 273–294.
    [Google Scholar]
  158. Vakarcs, G., Vail, P.R., Tari, G., Pogácsás, G., Mattick, R.E. & Szabó, A. (1994) Third‐order Middle Miocene‐Early Pliocene depositional sequences in the prograding delta complex of the Pannonian Basin. Tectonophysics, 240, 81–106.
    [Google Scholar]
  159. Vass, D. (2002) Lithostratigraphy of Western Carpathians: Neogene and Buda Paleogene, 202 pp. ŠGÚDŠ, Bratislava. (in Slovak).
    [Google Scholar]
  160. Vass, D., Hók, J., Kováč, P. & Elečko, M. (1993) The Paleogene and Neogene tectonic events of the Southern Slovakia depressions in the light of the stress‐field analyses. Mineralia Slovaca, 25(2), 79–92.
    [Google Scholar]
  161. Vojtko, R., Tokárová, E., Sliva, Ľ. & Pešková, I. (2010) Cenozoic palaeostress field reconstruction and revised tectonic history in the northern part of the Central Western Carpathians (the Spišská Magura and Tatra Mountains). Geol. Carpath., 61(3), 211–225.
    [Google Scholar]
  162. Wade, B.S., Pearson, P.N., Berggren, W.A. & Pälike, H. (2011) Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev., 104, 111–142.
    [Google Scholar]
  163. Wagner, G.A. & Van den Haute, P. (1992) Fission‐Track Dating, 285 pp. Kluwer Academic Publishers, Dordrecht.
    [Google Scholar]
  164. Wessely, G. (1988) Structure and development of the Vienna basin in Austria. In: The Pannonian Basin, a Study in Basin Evolution (Ed. by RoydenL.H. & HorvathF. ) Am. Assoc. Pet. Geol. Mem., 45, 333–346.
    [Google Scholar]
  165. Wessely, G. (1992) The Calcareous Alps below the Vienna Basin in Austria and their structural and facial development in the Alpine‐Carpathian border zone. Geol. Carpath., 43, 347–354.
    [Google Scholar]
  166. Whitney, D.L. & Evans, B.W. (2010) Abbreviations for names of rock‐forming minerals. Am. Miner., 95, 185–187.
    [Google Scholar]
  167. Young, J.R., Bown, P.R. & Lees, J.A. (Eds.) (2015) Nannotax3 website. International Nannoplankton Association. http://ina.tmsoc.org/Nannotax3 .
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12244
Loading
/content/journals/10.1111/bre.12244
Loading

Data & Media loading...

Supplements

Lithostratigraphic chart.

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error