1887
Volume 30, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

The development of fast and reliable instrumental methods for U‐Pb dating and Lu‐Hf isotope analysis of zircon has caused detrital zircon to become a popular provenance indicator for clastic sediments and an important tool in basin analysis. In parallel with the increasing ease of access to data, advanced methods of data interpretation have been developed. The downside of some techniques for visualization and comparison of detrital zircon distribution patterns is that the results are difficult to relate to what the zircon grains really record: The age and nature of geological processes in a protosource terrane. Some simple methods of data presentation and inter‐sample comparison that preserve a direct and intuitively understandable relationship between the data and the age of zircon‐forming processes in the protosource are proposed here: Comparison of confidence intervals around empirical, cumulative distribution curves combined with the use of a plot of upper vs. lower quartile values of cumulative zircon U‐Pb age or Lu‐Hf model age distributions. This approach allows a robust and transparent separation to be made between samples whose detrital zircon distributions are indistinguishable from each other, and those that are more or less similar. Furthermore, it allows simple comparison between detrital zircon distributions and the geological age record of potential protosource terranes, or the detrital zircon distributions of possible sedimentary precursors.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12245
2017-05-03
2024-04-24
Loading full text...

Full text loading...

References

  1. Andersen, T. (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem. Geol., 216, 249–270.
    [Google Scholar]
  2. Andersen, T. (2014) The detrital zircon record: supercontinents, parallel evolution – or coincidence?Precambr. Res., 244, 279–287.
    [Google Scholar]
  3. Andersen, T., Griffin, W.L. & Pearson, N.J. (2002) Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. J. Petrol., 43, 1725–1747.
    [Google Scholar]
  4. Andersen, T., Andersson, U.B., Graham, S., Åberg, G. & Simonsen, S.L. (2009) Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of the Geological Society, London, 166, 233–247.
    [Google Scholar]
  5. Andersen, T., Elburg, M. & Cawthorn‐Blazeby, A. (2016a) U‐Pb and Lu–Hf zircon data in young sediments reflect sedimentary recycling in Eastern South Africa. J. Geol. Soc., 173, 337–351.
    [Google Scholar]
  6. Andersen, T., Kristoffersen, M. & Elburg, M.A. (2016b) How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study. Gondwana Res., 34, 12–148.
    [Google Scholar]
  7. Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O'Reilly, S.Y. & Pearson, N.J. (2010) The growth of the continental crust: constraints from zircon Hf‐isotope data. Lithos, 119, 457–466.
    [Google Scholar]
  8. Berry, R.F., Jenner, G.A., Meffre, S. & Tubrett, M.N. (2001) A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania?Earth Planet. Sci. Lett., 192, 207–222.
    [Google Scholar]
  9. Botev, Z.I., Grotowski, J.F. & Kroese, D.P. (2010) Kernel density estimation via diffusion. Ann. Stat., 38, 2916–2957.
    [Google Scholar]
  10. Bouvier, A., Vervoort, J.D. & Patchett, P.J. (2008) The Lu‐Hf and Sm‐Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett., 273, 48–57.
    [Google Scholar]
  11. Cawood, P.A., Hawkesworth, C.J. & Dhuime, B. (2013) The continental record and the generation of continental crust. Geol. Soc. Am. Bull., 125, 14–32.
    [Google Scholar]
  12. Chang, W., Cheng, J., Allaire, J.J., Xie, Y. & McPherson, J. (2016) shiny: Web ApplicationFramework for R [WWW Document]. URL https://cran.r-project.org/package=shiny
  13. Corfu, F., Hanchar, J.M., Hoskin, P.W.O. & Kinny, P., 2003. Atlas of zircon textures. In: Zircon (Ed. by Hanchar, J.M. & HoskinP.W.O. ) Mineralogical Society of America and Geochemical Society, Reviews in Mineralogy and Geochemistry, 53, 469–500.
    [Google Scholar]
  14. Dodson, M.H., Compston, W., Williams, I.S. & Wilson, J.F. (1988) A search for ancient detrital zircons in Zimbabwean sediments. Journal of the Geological Society, London, 145, 977–983.
    [Google Scholar]
  15. Dvoretsky, A., Kiefer, J. & Wolfowitz, J. (1956) Asymptotic minimax character of the samle distribution function and of the classical multinomial estimator. Annals of Mathematical Statistics, 27, 642–669.
    [Google Scholar]
  16. Eizenhöfer, P.R., Zhao, G., Sun, M., Zhang, J., Han, Y. & Hou, W. (2015) Geochronological and Hf isotopic variability of detrital zircons in Paleozoic strata across the accretionary collision zone between the North China craton and Mongolian arcs and tectonic implications. Geol. Soc. Am. Bull., 127, 1422–1436. https://doi.org/10.1130/B31175.1.
    [Google Scholar]
  17. Faure, G. & Menzing, T. (2005) Isotopes: Principles and Applications. 3rd edn, John Wiley & Sons, Hoboken, NJ, USA. 897 pp.
    [Google Scholar]
  18. Fedo, C.M., Sircombe, K.N. & Rainbird, R.H.2003. Detrital zircon analysis of the sedimentary record. In: Zircon (Ed. by Hanchar, J.M. & Hoskin, P.W.O ) Mineralogical Society of America and Geochemical Society, Reviews in Mineralogy and Geochemistry, 53, 277–303.
    [Google Scholar]
  19. Forbes, C., Evans, M., Hastings, N. & Peacock, B. (2011) Statistical Distributions. 4th edn, J. Wiley & Sons, Hoboken, New Jersey, USA. 212 pp.
    [Google Scholar]
  20. Fourie, P.H., Zimmermann, U., Beukes, N.J., Naidoo, T., Kobayashi, K., Kosler, J., Nakamura, E., Tait, J. & Theron, J.N. (2011) Provenance and reconnaissance study of detrital zircons of the Palaeozoic Cape Supergroup in South Africa: revealing the interaction of the Kalahari and Río de la Plata cratons. Int. J. Earth Sci., 100, 527–541.
    [Google Scholar]
  21. Frimmel, H.E., Basei, M.A.S., Gorrea, V.X. & Ndawedapo, M. (2013) A new lithostratigraphic subdivision and geodynamic model for the Pan‐African western Saldania Belt, South Africa. Precambr. Res., 231, 218–235.
    [Google Scholar]
  22. Gehrels, G.E. (2000) Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California. Geol. Soc. Am. Spec. Pap., 347, 1–17.
    [Google Scholar]
  23. Gehrels, G.E. (2012) Detrital zircon U‐Pb geochronology: current methods and new opportunities. In: Tectonics of Sedimentary Basins: Recent Advances (Ed. by C.Busby , A.Azor ), pp. 47–62. Blackwell, Oxford.
    [Google Scholar]
  24. Gresse, P.G., von Veh, M.W. & Frimmel, H. (2006) Namibian (Neoproterozoic) to Early Cambrian successions. In: The Geology of South Africa (Ed. by M.R.Johnson , C.R.Anhaeusser , R.J.Thomas ), pp. 395–420. Geological Society of South Africa and Council for Geosciences, Johannesburg and Pretoria, South Africa.
    [Google Scholar]
  25. Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y. & Shee, S.R. (2000) The Hf isotope composition of cratonic mantle: LAM‐MC‐ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta, 64, 133–147.
    [Google Scholar]
  26. Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X.S. & Zhou, X.M. (2002) Zircon chemistry and magma mixing, SE China: in‐situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61, 237–269.
    [Google Scholar]
  27. Hyndman, R.J. & Fan, Y. (1996) Sample quantiles in statistical packages. The American Statistician, 50, 361–365.
    [Google Scholar]
  28. Knudsen, T.L., Andersen, T., Whitehouse, M.J. & Vestin, J. (1997) Detrital zircon ages from southern Norway implications for the Proterozoic evolution of the southwestern Baltic Shield. Contrib. Miner. Petrol., 130, 47–58.
    [Google Scholar]
  29. Koglin, N., Zeh, A., Frimmel, H.E. & Gerdes, A. (2010) New constraints on the auriferous Witwatersrand sediment provenance from combined detrital zircon U‐Pb and Lu–Hf isotope data for the Eldorado Reef (Central Rand Group, South Africa). Precambr. Res., 183, 817–824.
    [Google Scholar]
  30. Kristoffersen, M., Andersen, T. & Andresen, A. (2014) U‐Pb age and Lu–Hf signatures of detrital zircon from Palaeozoic sandstones in the Oslo Rift, Norway. Geologial Magazine, 151, 816–829. https://doi.org/10.1017/S0016756813000885.
    [Google Scholar]
  31. Kristoffersen, M., Andersen, T., Elburg, M.A. & Watkeys, M.K. (2016) Detrital zircon in a supercontinental setting: locally derived and far‐transported components in the Ordovician Natal Group, South Africa. Journal of the Geological Society, London, 173, 203–215. https://doi.org/10.1144/jgs2015-012.
    [Google Scholar]
  32. Malusà, M.G., Carter, A., Limoncelli, M., Villa, I.M. & Garzanti, E. (2013) Bias in detrital zircon geochronology and thermochronometry. Chem. Geol., 359, 90–107.
    [Google Scholar]
  33. Malusà, M.G., Resentini, A. & Garzanti, E. (2016) Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res., 31, 1–19.
    [Google Scholar]
  34. Meert, J.G. (2014) Strange attractors, spiritual interlopers and lonely wanderers: the search for pre‐Pangean supercontinents. Geosci. Front., 5, 155–166.
    [Google Scholar]
  35. Morris, G.A., Kirkland, C.L. & Pease, V. (2015) Orogenic paleofluid flow recorded bydiscordant detrital zircons in the Caledonian foreland basin of northern Greenland. Lithosphere, 7, 138–143. https://dx.doi.org/10.1130/l420.1.
    [Google Scholar]
  36. Naidoo, T., Zimmermann, U. & Chemale, F. (2013) The evolution of Gondwana: U‐Pb, Sm–Nd, Pb–Pb and geochemical data from Neoproterozoic to Early Palaeozoic successions of the Kango Inlier (Saldania Belt, South Africa). Sed. Geol., 294, 164–178.
    [Google Scholar]
  37. Nemchin, A.A. & Cawood, P.A. (2006) Discordance of the U‐Pb system in detrital zircons: implication for provenance studies of sedimentary rocks. Sed. Geol., 182, 143–162.
    [Google Scholar]
  38. Pokki, J., Kohonen, J., Rämö, O.T. & Andersen, T. (2013) The Suursaari conglomerate (SE Fennoscandian shield; Russia)—Indication of cratonic conditions and rapid reworking of quartz arenitic cover at the outset of the emplacement of the rapakivi granites at ca. 1.65 Ga. Precambr. Res., 233, 132–143.
    [Google Scholar]
  39. Pullen, A., Ibáñez‐Meija, M., Gehrels, G.E., Ibáñez‐Meija, J.C. & Pecha, M. (2014) What happens when n = 1000? Creating large‐n geochronological datasets with LA‐ICP‐MS for geologic investigations. Journal of Analytical Atomic Spectroscopy, 29, 971–980.
    [Google Scholar]
  40. R Development Core Team
    R Development Core Team (2015) R: A Language and Environment for Statistical Computing [WWW Document]. http://www.r-project.org
    [Google Scholar]
  41. Reimink, J.R., Davies, J.H.F.L., Waldron, J.W.F. & Rojas, X. (2016) Dealing with discordance: a novel approach for analysing U–Pb detrital zircon datasets. J. Geol. Soc., 116, 577–585. https://dx.doi.org/10.1144/jgs2015-114.
    [Google Scholar]
  42. Rubidge, B.S., Erwin, D.H., Ramezani, J., Bowring, S.A. & de Klerk, W.J. (2013) High‐precision temporal calibration of Late Permian vertebrate biostratigraphy: U‐Pb zircon constraints from the Karoo Supergroup, South Africa. Geology, 41, 363–366.
    [Google Scholar]
  43. Sambridge, M.S. & Compston, W. (1994) Mixture modeling of multi‐component data sets with application to ion‐probe zircon ages. Earth Planet. Sci. Lett., 128, 373–390.
    [Google Scholar]
  44. Satkoski, A.M., Wilkinson, B.H., Hietpas, J.H. & Samson, S.D. (2013) Likeness among detrital zircon populations – an approach to the comparison of age frequency data in time and space. Geol. Soc. Am. Bull., 125, 1783–1799.
    [Google Scholar]
  45. Saylor, J.E., Stockli, D.E., Horton, B.K., Nie, J. & Mora, A. (2012) Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: implications for the te|ctonic history of the Eastern Cordillera, Colombia. Geol. Soc. Am. Bull., 124, 762–779.
    [Google Scholar]
  46. Saylor, J.E., Knowles, J.N., Horton, B.K., Nie, J. & Mora, A. (2013) Mixing of source populations recorded in detrital zircon U‐Pb age spectra of modern river sands. J. Geol., 121, 17–33.
    [Google Scholar]
  47. Scheepers, R. & Schoch, A.E. (2006) The Cape Granite Suite. In: The Geology of South Africa (Ed. by M.R.Johnson , C.R.Anhaeusser , R.J.Thomas ), pp. 421–432. Geological Society of South Africa and Council for Geosciences, Johannesburg and Pretoria, South Africa.
    [Google Scholar]
  48. Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall, London. 175 pp.
    [Google Scholar]
  49. Sircombe, K.N. (2000) Quantitative comparison of large sets of geochronological data using multivariate analysis: a provenance study example from Australia. Geochim. Cosmochim. Acta, 64, 1593–1616.
    [Google Scholar]
  50. Sircombe, K.N. & Hazelton, M.L. (2004) Comparison of detrital zircon age distributions by kernel functional estimation. Sed. Geol., 171, 91–111.
    [Google Scholar]
  51. Söderlund, U., Patchett, J.P., Vervoort, J.D. & Isachsen, C.E. (2004) The176Lu decay constant determined by Lu–Hf and U‐Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett., 219, 311–324.
    [Google Scholar]
  52. Thamm, A.G. & Johnson, M.R. (2006) The Cape Supergroup. In: The Geology of South Africa (Ed. by M.R.Johnson , C.R.Anhaeusser , R.J.Thomas ), pp. 443–460. Geological Society of South Africa and Council for Geosciences, Johannesburg and Pretoria, South Africa.
    [Google Scholar]
  53. Thas, O. (2010) Comparing Distributions. Springer Series in Statistics, Springer Science+Business Media, New York. 335 pp.
    [Google Scholar]
  54. Veevers, J.J. & Saeed, A. (2007) Central Antarctic provenance of Permian sandstones in Dronning Maud Land and the Karoo Basin: integration of U‐Pb age and TDM ages and host‐rock affinity from detrital zircons. Sed. Geol., 202, 653–676.
    [Google Scholar]
  55. Vermeesch, P. (2004) How many grains are needed for a provenance study?Earth Planet. Sci. Lett., 224, 441–451.
    [Google Scholar]
  56. Vermeesch, P. (2012) On the visualization of detrital zircon distributions. Chem. Geol., 312–313, 190–194.
    [Google Scholar]
  57. Vermeesch, P. (2013) Multi‐sample comparison of detrital age distributions. Chem. Geol., 341, 140–146.
    [Google Scholar]
  58. Vermeesch, P. & Garzanti, E. (2015) Making geological sense of ‘Big Data’ in sedimentary provenance analysis. Chem. Geol., 409, 20–27.
    [Google Scholar]
  59. Vermeesch, P., Resentini, A. & Garzanti, E. (2016) An R package for statistical provenance analysis. Sed. Geol., 336, 14–25.
    [Google Scholar]
  60. Vorster, C., Kramers, J., Beukes, N. & van Niekerk, H. (2016) Detrital zircon U‐Pb ages of the Palaeozoic Natal Group and Msikaba Formation, Kwazulu‐Natal, South Africa: provenance areas in context of Gondwana. Geol. Mag., 153, 460–486. https://doi.org/10.1017/S0016756815000370.
    [Google Scholar]
  61. Wassermann, L. (2006) All of Nonparametric Statistics. Springer, New York. 442 pp.
    [Google Scholar]
  62. Wickham, H. (2009) ggplot2: Elegant Graphics for Data Analysis. Springer, New York.
    [Google Scholar]
  63. Wickham, H. & Chang, W. (2016) devtools: Tools to Make Developing R Packages Easier [WWW Document]. URL https://cran.r-project.org/package=devtools
  64. Wilk, M.B. & Gnanadesikan, R. (1968) Probability plotting methods for the analysis of data. Biometrika, 55, 1–17.
    [Google Scholar]
  65. Zeh, A., Wilson, A.H. & Ovtcharova, M. (2016) Source and age of upper Transvaal Supergroup, South Africa: age‐Hf isotope record of zircons in Magaliesberg quartzite and Dullstroom lava, and implications for Paleoproterozoic (2.5–2.0 Ga) continent reconstruction. Precambr. Res., 278, 1–21.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12245
Loading
/content/journals/10.1111/bre.12245
Loading

Data & Media loading...

Supplements

Data S1: Documentation of software.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error