1887

Abstract

Summary

At the present time, numerous methods of transformation have been developed that allow us to divide the gravitational field into components that are identified with the influence of various deep layers of rocks with a minimum of a priori information about the sources. The possibility of obtaining a three-dimensional picture of the field distribution in space makes these methods very attractive for geologists and geophysicists. Often geological interpretation of 3D images, the field is reduced to the application of the shear volume of models of fields contours, geological features or stratigraphic boundaries. This approach to the interpretation of the results of the tomographic transformation of the field is not completely valid. Only the use of methods of quantitative interpretation makes it possible to create a physical-geological model of the geological section from the 3D model of the field.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201800172
2018-04-09
2024-04-16
Loading full text...

Full text loading...

References

  1. БаньковськийМ.В., ГейхманА.М.
    [2011] Сучасні геолого-геофiзичнi методи дослідження глибинної будови Землі. Xth International Conference on Geoinformatics - Theoretical and Applied Aspect.
    [Google Scholar]
  2. БычковС.Г.
    [2010] Методы обработки и интерпретации гравиметрических наблюдений при решении задач нефтегазовой геологии. Екатеринбург, УрО РАН. ISBN 978-5-7691-2127-2.
    [Google Scholar]
  3. БычковС.Г., НовоселицкийВ.М., ПростолуповГ.В., ЩербининаГ.П.
    [2004] Информационная технология содержательной интерпретации геопотенциальных полей. Геоинформатика, 1, НАНУ, Киев, 33–42.
    [Google Scholar]
  4. ГоліковВ.М.
    [2012] Особливості геологічної інтерпретації результатів гравірозвідки та магніторозвідки. XIth International Conference on Geoinformatics - Theoretical and Applied Aspect.
    [Google Scholar]
  5. ДолгальА.С., БычковС.Г., КостицынВ.И., П.Н.Новикова, ПугинА.В., РашидовВ.А., ШархимуллинА.Ф.
    [2012] О теории и практике томографической интерпретации геопотенциальных полей. Геофизика, 5, 8–17.
    [Google Scholar]
  6. МатусевичА.В.
    [2005] Объемное преобразование гравитационного поля и использование его при изучении солянокупольных структур Прикаспийской впадины. Известия НАН РК. Серия геологическая, 5. 45–62
    [Google Scholar]
  7. МатусевичА.В., БычковС.Г., ЖунусовД.Е., ПростолуповГ.В.
    [2015] Анализ эффективности методов гравитационной томографии при изучении солянокупольных структур Прикаспийской впадины. Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей, 138–140.
    [Google Scholar]
  8. ПетровА.В., ПискунП.В., ЗиновкинС.В.
    [2005] Новые возможности компьютерной технологии статистического и спектрально-корреляционного анализа геоданных «КОСКАД 3Dt». Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей, 219–221.
    [Google Scholar]
  9. MaurielloP., PatellaD.
    [2001] Gravity probability tomography: a new tool for buried mass distribution imaging. Geophysical Prospecting, 49, 1–12.
    [Google Scholar]
  10. XiaoF.
    [2015] Gravity correlation imaging with a moving data window. Journal of Applied Geophysics, 112, 29–32
    [Google Scholar]
  11. BankovskyM.V., GeikhmanA.M.
    [2011] Modern geological and geophysical methods of investigation of the deep structure of the Earth. Xth International Conference on Geoinformatics - Theoretical and Applied Aspect.
    [Google Scholar]
  12. BychkovS.G.
    [2010] Methods of processing and interpreting gravimetric observations in solving problems of oil and gas geology. Ekaterinburg, UrB RAS. ISBN 978-5-7691-2127-2.
    [Google Scholar]
  13. BychkovS.G., Novoselitsky, V.M., Prostolupov, G.V., ShcherbininaG.P.
    [2004] Information technology of meaningful interpretation of geopotential fields. Geoinformatics, 1, NASU, Kiev, 33–42.
    [Google Scholar]
  14. GolikovV.M.
    [2012] Features of geological interpretation of the results of gravity and magnetizing. XIth International Conference on Geoinformatics - Theoretical and Applied Aspect.
    [Google Scholar]
  15. DolgalA.S., Bychkov, S.G., Kostitsyn, V.I., Novikova, P.N., Pugin, A.V., Rashidov, V.A., SharkhimullinA.F.
    [2012] On the theory and practice of tomographic interpretation of geopotential fields. Geophysics, 5, 8–17.
    [Google Scholar]
  16. MatusevichA.V.
    [2005] Volumetric transformation of the gravitational field and its use in studying the salt-dome structures of the Caspian depression. Proceedings of NAS RK. Geological series, 5. 45–62
    [Google Scholar]
  17. MatusevichA.V., Bychkov, S.G., Zhunusov, D.E., ProstolupovG.V.
    [2015] Analysis of the effectiveness of gravitational tomography methods in the study of salt-dome structures of the Caspian depression. Questions of theory and practice of geological interpretation of gravitational, magnetic and electric fields, 138–140.
    [Google Scholar]
  18. PetrovA.V., Piskun, P.V., ZinovkinS.V.
    [2005] New possibilities of computer technology of statistical and spectral-correlation analysis of geodata “KOSCAD 3Dt”. Questions of theory and practice of geological interpretation of gravitational, magnetic and electric fields, 219–221.
    [Google Scholar]
  19. MaurielloP., PatellaD.
    [2001] Gravity probability tomography: a new tool for buried mass distribution imaging. Geophysical Prospecting, 49, 1–12.
    [Google Scholar]
  20. XiaoF.
    [2015] Gravity correlation imaging with a moving data window. Journal of Applied Geophysics, 112, 29–32
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201800172
Loading
/content/papers/10.3997/2214-4609.201800172
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error