1887

Abstract

Summary

The article presents a review and analysis of the prospects for the use of unmanned aerial systems (UAVs) for aerogeophysical studies. The requirements for unmanned aerial systems used for geophysical surveying and for surveying equipment are determined. Recommendations for the selection of unmanned aerial systems for the geophysical survey tasks are given. The conclusion made that the most optimal class of unmanned aerial systems for geophysics are aerodynamic class of devices which include aircraft and rotor UAVs. The current experience of using unmanned systems in aerogeophysics in Russia and abroad is considered. Also, modern problems of unmanned aerial systems are considered: the questions of the legal issues of using UAVs, as well as the problems of power supplies and the reduction of economic efficiency when increasion the area of work.

A conclusion is made about the high relevance and prospects of this direction in aerogeophysics.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201800480
2018-04-23
2024-04-20
Loading full text...

Full text loading...

References

  1. NexF., RemondinoF.
    [2014] UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1–15.
    [Google Scholar]
  2. Zinchenko, O.N.
    Bespilotnye letatel’nye apparaty: primenenie v celyah aehrofotos”emki dlya kartografirovaniya (chast’ 1) - Rakurs, biblioteka, stat’i i prezentacii [Zinchenko, O.N. Unmanned Aerial Vehicles: using for mapping aerial photo survey (part 1) –Racurs: scientific library and presentations] (n. d.) Retrieved from: http://www.racurs.ru/www_download/articles/UAV_1.pdf [in Russian].
    [Google Scholar]
  3. Reference section – Graphs & Tables / UVS International (n.d). Retrieved from: http://media.aero.und.edu/uasresearch.org/documents/150-155_Reference-SectionGraphs&Tables.pdf
    [Google Scholar]
  4. On’kovI.V. and GarmashA.V.
    [2015] DEM made by UAV Geoscan 101 survey data accuracy estimation. GeoProfi, 5, 49 – 51. [in Russian].
    [Google Scholar]
  5. Obzor bespilotnyh letatel'nyh apparatov 2016 g. / Rakurs – biblioteka – stat’i i prezentacii [Unmanned Aerial Vehicles review 2016 – Racurs: scientific library and presentations] (n.d). Retrieved from: http://www.racurs.ru/?page=828 [in Russian].
    [Google Scholar]
  6. KonovalovaU.A., IvanovV.K.
    [2014] Provlem of aerial control. Current unmanned aerial vehicles analyse. Telekommunikacii I informacionnye tekhnologii [Telecommunications and IT]. Vol. 1, 1, 5–7. [in Russian].
    [Google Scholar]
  7. StudenikinA.V., MikhalinV.A., IvanovR.V., MagarshakS.I.
    [2012] Perspective unmanned aerial vehicles using practice. Sovremennye issledovaniya Zemli iz kosmosa [Modern Studies of the Earth from Space]. Vol. 9, 4, 102–106. [in Russian].
    [Google Scholar]
  8. Bespilotnye letatel'nye apparaty vertoletnogo tipa / TekhnoKom [Unmanned aerial vechicles: gelicopters – TechnoKom] (n. d.) Retrieved from: http://www.tecnocom.ru/stati/bespilotnye-letatelnye-apparaty-v-rossii [in Russian].
    [Google Scholar]
  9. Savel’evE.N., SuyundukovN.R., AkhmedovD.Sh.
    [2015] Creating hybrid engines and selection of the optimal structural scheme of a hybrid engine for multicopters – works analyses. Innovatsyonnaya nauka [Innovational science]. 9(9), 91–97. [in Russian].
    [Google Scholar]
  10. DudekM., TomczykP., WygonikP., KorkoszM., BoguszP., LisB.
    [2013] Hybrid Fuel Cell – Battery System as a Main Power Unit for Small Unmanned Aerial Vehicles (UAV). International Journal of electrochemical science. 8, 8442 – 8463.
    [Google Scholar]
  11. TezkanB., StollJ.B., BergersR., GroßbachH.
    [2011] Unmanned aircraft system proves itself as a geophysical measuring platform for aeromagnetic surveys. First Break, 29(4), 103–105.
    [Google Scholar]
  12. StollJ.B.
    [2013] Unmanned Aircraft Systems for Rapid Near Surface Geophysical Measurements. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, UAV-g2013, 4 – 6 September 2013, Rostock, Germany,Vol. XL-1/W2, 391–394.
    [Google Scholar]
  13. FirsovA.P., ZlygostevI.N., Dyad’kovP. G. , SavlukA.V., VajsmanP.A., Val’dA.K., SheremetA.S., EvmenovN.D.
    [2015] High-frequency magnetometer using in lite UAVs for geological and geophysical studying of explosion tubes. In Sbornik materialov GEO-Sibir’-2015: T. 1[Proceedings of GEO-Siberia-2017: Vol. 1.]. Novosibirsk: SSGA, 299–304. [in Russian].
    [Google Scholar]
  14. FirsovA.P., ZlygostevI.N., SavlukA.V., VajsmanP.A., Val’dA.K., Dyad’kovP. G., KolesovA.S., SheremetA.S.
    [2015] Using of unmanned aerial vehicles in geological and geophysical mapping. In Materialy V Vserossiyskoy nauchno-praktichescoy konferencii «Geologia i Mineral‘no-syr’evye Resursy Severo-Vostoka Rossii» [Proceeding of V All-Russian scientific-practical conference “Geology and mineral resources of the northeast of Russia”], 529–533. [in Russian].
    [Google Scholar]
  15. TishkinA.A., FirsovA.P., ZlygostevI.N., SavlukA.V., KolesovA.S., SheremetA.S.
    [2017] Magnetometric survey of the “royal” mound and the nearest territory on the archaeological site Balchikova-3 tract using an unmanned aerial vehicle. Teoriya i praktika arheologicheskih issledovanij [Theory andpractice of archaeological research], №4 (20),103–111. [in Russian].
    [Google Scholar]
  16. BabashkinN.M., KandichanskyiS.A. and NekhinS.S.
    [2017] Comparison of the effectiveness of aerial photography using unmanned and manned air systems. GeoProfi, 1, 14 – 19. [in Russian].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201800480
Loading
/content/papers/10.3997/2214-4609.201800480
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error