Home

Quick Links

Search

 
Survey Designing for Blended Acquisition with Irregularly Sub-Sampled GeometriesNormal access

Authors: S. Nakayama, G. Blacquière, T. Ishiyama and S. Ishikawa
Event name: 80th EAGE Conference and Exhibition 2018
Session: Simultaneous Source - Acquisition and Processing
Publication date: 11 June 2018
DOI: 10.3997/2214-4609.201800644
Organisations: EAGE
Language: English
Info: Extended abstract, PDF ( 2.19Mb )
Price: € 20

Summary:
We introduce a workflow to derive survey parameters responsible for source blending as well as spatial sampling of detectors and sources. The proposed workflow iteratively performs the following three steps. The first step is application of blending and sub-sampling to an unblended and well-sampled data. We then apply a closed-loop deblending and data reconstruction enabling a robust estimate of a deblended and reconstructed data. The residue for a given design from this step is evaluated, and subsequently used by genetic algorithms (GAs) to simultaneously update the survey parameters related to both blending and spatial sampling. The updated parameters are fed into a next iteration till they satisfy given stopping criteria. We also propose repeated encoding sequence (RES) used to form a parameter sequence in GAs, making the proposed designing workflow computationally affordable. We demonstrate the results of the workflow using numerically simulated examples that represent blended dispersed source array data. Difference attributable only to a way to design parameters is easily recognizable. The optimized parameters yield clear improvement of deblending and data reconstruction quality and subsequently provide optimal acquisition scenarios. Additionally, comparison among different optimization schemes illustrates ability of GAs along with RES to efficiently find better solutions.


Back to the article list