1887

Abstract

Summary

A big challenge in digital rock physics today is the speed with which X-ray tomography data can be processed, i.e. the time it takes from collecting the raw X-ray projections over the image reconstruction and analysis to derivation of the rock petrophysical properties. This process is often labour intensive and the results get biased due to manual decisions made on image processing parameters. It becomes an even large challenge when we want to produce significant relevant results, i.e. we have to sample a lot of material. Here we present of automated procedure to perform this task and provide an example of the determination of porosity and surface area from a series of chips extracted from core plugs of Upper Maastrictian Chalk.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201800773
2018-06-11
2024-03-29
Loading full text...

Full text loading...

References

  1. Ahrenholz, B., Tolke, J., Lehmann, P., Peters, A., Kaestner, A., Krafczyk, M. and Durner, W.
    [2008] Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model. Adv Water Resour31, 1151–1173.
    [Google Scholar]
  2. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E. and Wells, G. N.
    [2015] The FEniCS Project Version 1.5. Archive of Numerical Software3, 9–23.
    [Google Scholar]
  3. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A. and Zhan, X.
    [2013a] Digital rock physics benchmarks—Part I: Imaging and segmentation. Comp. Geosci.50, 25–32.
    [Google Scholar]
  4. [2013b] Digital rock physics benchmarks - part II: Computing effective properties. Comp. Geosci.50, 33–43.
    [Google Scholar]
  5. Arns, C. H., Bauget, F., Ghous, A., SakellarioU, A., Senden, T. J., Sheppard, A. P., Sok, R. M., Pinczewski, W. V., Kelly, J. C. and Knackstedt, M. A.
    [2005] Digital core laboratory: Petrophysical analysis from 3D imaging of reservoir core fragments. Petrophysics46, 260–277.
    [Google Scholar]
  6. Berg, S., Ott, H., Klapp, S. A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J. O., Kersten, M., Irvine, S. and Stampanoni, M.
    [2013] Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. USA110, 3755–3759.
    [Google Scholar]
  7. Blunt, M. J.
    [2017] Multiphase Flow in Permeable Media. Cambridge University Press, Cambridge.
    [Google Scholar]
  8. Bruns, S., Stipp, S. L. S. and Sørensen, H. O.
    [2017a] Looking for the Signal: A Guide to Iterative Noise and Artefact Removal in X-ray Tomography Reconstructions of Reservoir Rocks. Adv Water Res.105, 96–107.
    [Google Scholar]
  9. [2017b] Statistical Representative Elementary Volumes of Porous Media determined using Greyscale Analysis of 3D Tomograms. Adv Water Res.107, 32–42.
    [Google Scholar]
  10. Gursoy, D., De Carlo, F., Xiao, X. H. and Jacobsen, C.
    [2014] TomoPy: a framework for the analysis of synchrotron tomographic data. J. Synchr. Rad.21, 1188–1193.
    [Google Scholar]
  11. Jin, G., Torres-Verdin, C., Radaelli, F. and Rossi, E.
    [2007] Experimental Validation of Pore-Level Calculations of Static and Dynamic Petrophysical Properties of Clastic Rocks. SPE Annual Technical Conference and Exhibition, Anaheim, California, U.S.A.: Society of Petroleum Engineers.
    [Google Scholar]
  12. Knackstedt, M. A., Arns, C. H., Limaye, A., Arns, C. H., Limaye, A., Sakellariou, A., Senden, T. J., Sheppard, A. R., Sok, R. M., Pinczewski, W. V. and Bunn, G. F.
    [2004] Digital core laboratory: Reservoir-core properties derived from 3D images. J Petrol. Technol.56, 66–68.
    [Google Scholar]
  13. Lorensen, W. E. and Cline, H. E.
    [1987] Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph.21, 163–169.
    [Google Scholar]
  14. Misztal, M. K., Hernandez-Garcia, A., Matin, R., Sørensen, H. O. and Mathiesen, J.
    [2015] Detailed analysis of the lattice Boltzmann method on unstructured grids. J. Comput. Phys.297, 316–339.
    [Google Scholar]
  15. Müter, D., Sørensen, H. O., Jha, D., Harti, R., Dalby, K. N., Suhonen, H., Feidenhans’l, R., Engstrøm, F. and Stipp, S. L. S.
    [2014] Resolution dependence of petrophysical parameters derived from X-ray tomography of chalk. Appl. Phys. Lett.105, 043108 1–4.
    [Google Scholar]
  16. Ramstad, T., Idowu, N., Nardi, C. and Øren, P. E.
    [2012] Relative Permeability Calculations from Two-Phase Flow Simulations Directly on Digital Images of Porous Rocks. Transport Porous Med94, 487–504.
    [Google Scholar]
  17. Ramstad, T., Øren, P. E. and Bakke, S.
    [2009] Simulation of Two Phase Flow in Reservoir Rocks Using a Lattice Boltzmann Method, SPE Ann. Tech. Conf. Exh., New Orleans, Louisiana: Soc. Petr. Eng.
    [Google Scholar]
  18. Schlüter, S., Berg, S., Rücker, M., Armstrong, R. T., Vogel, H. J., Hilfer, R. and Wildenschild, D.
    [2016] Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media. Water Res. Res.52, 2194–2205.
    [Google Scholar]
  19. Sharp, B., DesAutels, D., Powers, G., Young, R., Foster, S., Diaz, E. and Dvorkin, J.
    [2009] Capturing digitial rock properties for reservoir modeling. World Oil October, 67–68.
    [Google Scholar]
  20. Takeuchi, A., Uesugi, K. and Suzuki, Y.
    [2009] Zernike phase-contrast x-ray microscope with pseudo-Kohler illumination generated by sectored (polygon) condenser plate. J. Phys.: Conf. Series186, 012020.
    [Google Scholar]
  21. Tölke, J., Krafczyk, X., Schulz, M. and Rank, E.
    [2002] Lattice Boltzmann simulations of binary fluid flow through porous media. Philos. T. Roy. Soc. A360, 535–545.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201800773
Loading
/content/papers/10.3997/2214-4609.201800773
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error