1887
Volume 30, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Transient sediment storage and mixing of deposits of various ages during transport across alluvial piedmonts alter the clastic sedimentary record. We quantify buffering and mixing during cycles of aggradation–incision in the north piedmont of the Eastern Tian Shan. We complement existing chronologic data with 20 new luminescence ages and one cosmogenic radionuclide age of terrace abandonment and alluvial aggradation. Over the last 0.5 Myr, the piedmont deeply incised and aggraded many times per 100 kyr. Aggradation is driven by an increased flux of glacial sediment accumulated in the high range and flushed onto the piedmont by greater water discharge at stadial–interstadial transitions. After this sediment is evacuated from the high range, the reduced input sediment flux results in fluvial incision of the piedmont as fast as 9 cm year−1 and to depths up to 330 m. The timing of incision onset is different in each river and does not directly reflect climate forcing but the necessary time for the evacuation of glacial sediment from the high range. A significant fraction of sediments evacuated from the high range is temporarily stored on the piedmont before a later incision phase delivers it to the basin. Coarse sediments arrive in the basin with a lag of at least 7–14 kyrs between the first evacuation from the mountain and later basinward transport. The modern output flux of coarse sediments from the piedmont contains a significant amount of recycled material that was deposited on the piedmont as early as the Middle Pleistocene. Variations in temperature and moisture delivered by the Westerlies are the likely cause of repeated aggradation–incision cycles in the north piedmont instead of monsoonal precipitation. The arrival of the gravel front into the proximal basin is delayed relative to the fine‐grained load and both are separated by a hiatus. This work shows, based on field observations and data, how sedimentary systems respond to climatic perturbations, and how sediment recycling and mixing can ensue.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12267
2017-10-31
2024-04-20
Loading full text...

Full text loading...

References

  1. Aitken, M.J. (1998) An introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon‐Stimulated Luminescence. Oxford University Press, Oxford.
    [Google Scholar]
  2. Allen, P.A. (1997) Earth Surface Processes. Wiley‐Blackwell, Oxford.
    [Google Scholar]
  3. Allen, P.A. (2008) Time scales of tectonic landscapes and their sediment routing systems. Geol. Soc. Spec. Publ., 296(1), 7–28.
    [Google Scholar]
  4. Allen, P.A., Armitage, J.J., Carter, A., Duller, R.A., Michael, N.A., Sinclair, H.D., Whitchurch, A.L. & Whittaker, A.C. (2013) The Qs problem: sediment volumetric balance of proximal foreland basin systems – Allen – 2013 – Sedimentology – Wiley Online Library. Sedimentology, 60, 102–130.
    [Google Scholar]
  5. An, Z., Colman, S.M., Zhou, W., Li, X., Brown, E.T., Jull, A.J.T., Cai, Y., Huang, Y., Lu, X., Chang, H., Song, Y., Sun, Y., Xu, H., Liu, W., Jin, Z., Liu, X., Cheng, P., Liu, Y., Ai, L., Li, X., Liu, X., Yan, L., Shi, Z., Wang, X., Wu, F., Qiang, X., Dong, J., Lu, F. & Xu, X. (2012) Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci. Rep., 2, 1–7.
    [Google Scholar]
  6. Armitage, J.J., Dunkleyjones, T., Duller, R.A., Whittaker, A.C. & Allen, P.A. (2013) Temporal buffering of climate‐driven sediment flux cycles by transient catchment response. Earth Planet. Sci. Lett., 369, 200–210.
    [Google Scholar]
  7. Armitage, J.J., Burgess, P.A., Hampson, G.J. & Allen, P.A. (2016) Deciphering the origin of cyclical gravel front and shoreline progradation and retrogradation in the stratigraphic record. Basin Res., 1–21. https://doi.org/10.1111/bre.12203.
    [Google Scholar]
  8. Arnold, L.J. & Roberts, R.G. (2009) Stochastic modelling of multi‐grain equivalent dose (De) distributions: implications for OSL dating of sediment mixtures. Quat. Geochronol., 4(3), 204–230.
    [Google Scholar]
  9. Avouac, J.‐P. & Tapponnier, P. (1993) Kinematic model of active deformation in Central‐Asia. Geophys. Res. Lett., 20(10), 895–898.
    [Google Scholar]
  10. Avouac, J.‐P., Tapponnier, P., Bai, M., You, H. & Wang, G. (1993) Active thrusting and folding along the Northern Tien Shan and Late Cenozoic Rotation of the Tarim Relative to Dzungaria and Kazakhstan. J. Geophys. Res., 98(B4), 6755–6804.
    [Google Scholar]
  11. Bakke, J., Lie, Ø., Heegaard, E., Dokken, T., Haug, G.H., Birks, H.H., Dulski, P. & Nilsen, T. (2009) Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nat. Geosci., 2(3), 1–4.
    [Google Scholar]
  12. Bar‐Matthews, M., Ayalon, A. & Kaufman, A. (1997) Late quaternary paleoclimate in the Eastern Mediterranean Region from stable isotope analysis of Speleothems at Soreq Cave, Israel. Quatern. Res., 47(2), 155–168.
    [Google Scholar]
  13. Berger, A.L. (1978) Long‐term variations of caloric insolation resulting from the earth's orbital elements. Quatern. Res., 9(2), 139–167.
    [Google Scholar]
  14. Braucher, R., Del Castillo, P., Siame, L., Hidy, A.J. & Bourlès, D.L. (2009) Determination of both exposure time and denudation rate from an in situ‐produced 10Be depth profile: a mathematical proof of uniqueness. Model sensitivity and applications to natural cases. Quat. Geochronol., 4(1), 56–67.
    [Google Scholar]
  15. Braucher, R., Merchel, S., Borgomano, J. & Bourlès, D.L. (2011) Production of cosmogenic radionuclides at great depth: a multielement approach. Earth Planet. Sci. Lett., 309(1–2), 1–9.
    [Google Scholar]
  16. Brauer, A., Haug, G.H., Dulski, P., Sigman, D.M. & Negendank, J.F.W. (2008) An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci., 1(8), 520–523.
    [Google Scholar]
  17. Brown, N.D., Rhodes, E.J., Antinao, J.L. & McDonald, E.V. (2015) Single‐grain post‐IR IRSL signals of K‐feldspars from alluvial fan deposits in Baja California Sur, Mexico. Quatern. Int., 362, 132–138.
    [Google Scholar]
  18. Brozovic, N., Burbank, D.W. & Meigs, A.J. (1997) Climatic limits on landscape development in the northwestern Himalaya. Science, 276(5312), 571–574.
    [Google Scholar]
  19. Bull, W.B. (1977) The alluvial‐fan environment. Prog. Phys. Geogr., 1(2), 222–270.
    [Google Scholar]
  20. Bull, W.B. (1991) Geomorphic Responses to Climatic Change. Oxford University Press, New York, NY.
    [Google Scholar]
  21. Burchfiel, B.C., Brown, E.T., Deng, Q.D., Feng, X.Y., Li, J., Molnar, P., Shi, J.B., Wu, Z.M. & You, H.C. (1999) Crustal shortening on the margins of the Tien Shan, Xinjiang, China. Int. Geol. Rev., 41(8), 665–700.
    [Google Scholar]
  22. Buylaert, J.‐P., Murray, A.S., Thomsen, K.J. & Jain, M. (2009) Testing the potential of an elevated temperature IRSL signal from K‐feldspar. Radiat. Meas., 44(5–6), 560–565.
    [Google Scholar]
  23. Cai, Y., Chiang, J.C.H., Breitenbach, S.F.M., Tan, L., Cheng, H., Edwards, R.L. & An, Z. (2017) Holocene moisture changes in western China, Central Asia, inferred from stalagmites. Quatern. Sci. Rev., 158, 15–28.
    [Google Scholar]
  24. Castelltort, S. & Van Den Driessche, J. (2003) How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sed. Geol., 157, 3–13.
    [Google Scholar]
  25. Charreau, J., Chen, Y., Gilder, S., Dominguez, S., Avouac, J.‐P., Sen, S., Sun, D., Li, Y. & Wang, W.‐M. (2005) Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): implications for Late Cenozoic uplift of the Tianshan mountains. Earth Planet. Sci. Lett., 230(1–2), 177–192.
    [Google Scholar]
  26. Charreau, J., Chen, Y., Gilder, S., Barrier, L., Dominguez, S., Augier, R., Sen, S., Graveleau, F. & Wang, Q. (2009) Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China). Tectonics, 28(TC2008), 1–22.
    [Google Scholar]
  27. Charreau, J., Blard, P.H., Puchol, N., Avouac, J.‐P., Lallier‐Vergès, E., Bourlès, D., Braucher, R., Gallaud, A., Finkel, R.C., Jolivet, M., Chen, Y. & Roy, P. (2011) Paleo‐erosion rates in Central Asia since 9 Ma: a transient increase at the onset of Quaternary glaciations?Earth Planet. Sci. Lett., 304(1–2), 1–8.
    [Google Scholar]
  28. Chen, F.‐H., Chen, J.‐H., Holmes, J., Boomer, I., Austin, P., Gates, J.B., Wang, N.‐L., Brooks, S.J. & Zhang, J.‐W. (2010) Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quatern. Sci. Rev., 29(7–8), 1055–1068.
    [Google Scholar]
  29. Cheng, H., Zhang, P.Z. & Spötl, C. (2012) The climatic cyclicity in semiarid‐arid central Asia over the past 500,000 years. Geophys. Res. Lett., 39(1), 1–5.
    [Google Scholar]
  30. Cheng, H., Edwards, R.L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat, G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y. & Zhang, H. (2016a) The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534(7609), 640–646.
    [Google Scholar]
  31. Cheng, H., Spötl, C., Breitenbach, S.F.M., Sinha, A., Wassenburg, J.A., Jochum, K.P., Scholz, D., Li, X., Yi, L., Peng, Y., Lv, Y., Zhang, P., Votintseva, A., Loginov, V., Ning, Y., Kathayat, G. & Edwards, R.L. (2016b) Climate variations of Central Asia on orbital to millennial timescales. Sci. Rep., 6, 1–11.
    [Google Scholar]
  32. Clift, P.D. & Giosan, L. (2014) Sediment fluxes and buffering in the post‐glacial Indus Basin. Basin Res., 26(3), 369–386.
    [Google Scholar]
  33. D'Arcy, M. & Whittaker, A.C. (2014) Geomorphic constraints on landscape sensitivity to climate in tectonically active areas. Geomorphology, 204, 366–381.
    [Google Scholar]
  34. D'Arcy, M., Whittaker, A.C. & Roda, D.C. (2017) Boluda. Measuring alluvial fan sensitivity to past climate changes using a self‐similarity approach to grain size fining, Death Valley, California. Sedimentology, 64(2), 388–424.
    [Google Scholar]
  35. Dengfa, H., Suppe, J., Geng, Y., Shuwei, G., Shaoying, H., Xin, S., Xiaobo, W. & Chaojun, Z. (2005) Guide book for the field trip in south and north Tianshan foreland basin, Xinjiang Uygur Autonomous Region, China. International Conference on Theory and Application of Fault‐Related Folding in Foreland Basins. Research Institute of Petroleum Exploration and Development, PetroChina, Beiging.
    [Google Scholar]
  36. Dumitru, T.A., Zhou, D., Chang, E.Z., Graham, S.A., Hendrix, M.S., Sobel, E.R. & Carroll, A.R. (2001) Uplift, exhumation, and deformation in the Chinese Tian Shan. Geol. Soc. Am., Memoir: Palaeozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intercontinental deformation. 194, 71–99.
    [Google Scholar]
  37. Dunai, T.J. (2010) Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences. Cambridge University Press, Cambridge.
    [Google Scholar]
  38. Fan, A., Li, S.‐H. & Chen, Y.‐G. (2012) Late pleistocene evolution of Lake Manas in western China with constraints of OSL ages of lacustrine sediments. Quat. Geochronol., 10(C), 143–149.
    [Google Scholar]
  39. Fu, B.H., Lin, A.M., Kano, K., Maruyama, T. & Guo, J.M. (2003) Quaternary folding of the eastern Tian Shan, northwest China. Tectonophysics, 369(1–2), 79–101.
    [Google Scholar]
  40. Fu, X., Li, S.‐H., Li, B. & Fu, B. (2017) A fluvial terrace record of late Quaternary folding rate of the Anjihai anticline in the northern piedmont of Tian Shan, China. Geomorphology, 278, 91–104.
    [Google Scholar]
  41. Fuchs, M. & Lang, A. (2001) OSL dating of coarse‐grain fluvial quartz using single‐aliquot protocols on sediments from NE Peloponnese, Greece. Quatern. Sci. Rev., 20(5–9), 783–787.
    [Google Scholar]
  42. Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. & Olley, J.M. (1999) Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry, 41(2), 339–364.
    [Google Scholar]
  43. Gasse, F., Arnold, M., Fontes, J.C., Fort, M., Gibert, E., Huc, A., Bingyan, L., Yuanfang, L., Qing, L., Mélières, F., Campo, E.V., Fubao, W. & Qingsong, Z. (1991) A 13,000‐year climate record from western Tibet. Nature, 353(6346), 742–745.
    [Google Scholar]
  44. Gilbert, G.K. & Murphy, E.C. (1914) The transportation of debris by running water. U. S. Geological Survey Professional Paper, 86, 1–263.
    [Google Scholar]
  45. Gong, Z., Li, S.‐H. & Li, B. (2014) The evolution of a terrace sequence along the Manas River in the northern foreland basin of Tian Shan, China, as inferred from optical dating. Geomorphology, 213(C), 201–212.
    [Google Scholar]
  46. Gong, Z., Li, S.‐H. & Li, B. (2015) Late Quaternary faulting on the Manas and Hutubi reverse faults in the northern foreland basin of Tian Shan, China. Earth Planet. Sci. Lett., 424(C), 212–225.
    [Google Scholar]
  47. Gosse, J.C. & Phillips, F. (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quatern. Sci. Rev., 20(14), 1475–1560.
    [Google Scholar]
  48. Guan, S., Stockmeyer, J.M., Shaw, J.H., Plesch, A. & Zhang, J. (2016) Structural inversion, imbricate wedging, and out‐of‐sequence thrusting in the southern Junggar fold‐and‐thrust belt, northern Tian Shan, China. AAPG Bull., 100(9), 1443–1468.
    [Google Scholar]
  49. Guerit, L., Barrier, L., Jolivet, M., Fu, B. & Métivier, F. (2016) Denudation intensity and control in the Chinese Tian Shan: new constraints from mass balance on catchment‐alluvial fan systems. Earth Surf. Proc. Land., 41(8), 1088–1106.
    [Google Scholar]
  50. Guralnik, B., Matmon, A., Avni, Y., Porat, N. & Fink, D. (2011) Constraining the evolution of river terraces with integrated OSL and cosmogenic nuclide data. Quat. Geochronol., 6(1), 22–32.
    [Google Scholar]
  51. Hendrix, M.S., Graham, S.A., Carroll, A.R., Sobel, E.R., McKnight, C.L., Schulein, B.J. & Wang, Z.X. (1992) Sedimentary record and climatic implications of recurrent deformation in the Tian‐Shan ‐– evidence from Mesozoic Strata of the North Tarim, South Junggar, and Turpan Basins, Northwest China. Geol. Soc. Am. Bull., 104(1), 53–79.
    [Google Scholar]
  52. Hendrix, M.S., Dumitru, T. & Graham, S.A. (1994) Late Oligocene‐early Miocene unroofing in the Chinese Tian‐Shan: an early effect of the India‐Asia collision. Geology, 22(6), 487–490.
    [Google Scholar]
  53. Herman, F., Seward, D., Valla, P.G., Carter, A., Kohn, B., Willett, S.D. & Ehlers, T.A. (2013) Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504(7480), 423–426.
    [Google Scholar]
  54. Hidy, A.J., Gosse, J.C., Pederson, J.L., Mattern, J.P. & Finkel, R.C. (2010) A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: an example from Lees Ferry, Arizona. Geochem. Geophys. Geosyst., 11, 1–18.
    [Google Scholar]
  55. Hooke, R.L. (1968) Steady‐state relationships on arid‐region alluvial fans in closed basins. Am. J. Sci., 266(8), 609–629.
    [Google Scholar]
  56. Huntley, D.J., Godfrey‐Smith, D.I. & Thewalt, M.L.W. (1985) Optical dating of sediments. Nature, 313(5998), 105–107.
    [Google Scholar]
  57. Jelinowska, A., Tucholka, P., Gasse, F. & Fontes, J.C. (1995) Mineral magnetic record of environment in Late Pleistocene and Holocene Sediments, Lake Manas, Xinjiang, China. Geophys. Res. Lett., 22(8), 953–956.
    [Google Scholar]
  58. Jolivet, M., Dominguez, S., Charreau, J., Chen, Y., Li, Y. & Wang, Q. (2010) Mesozoic and cenozoic tectonic history of the central Chinese Tian Shan: reactivated tectonic structures and active deformation. Tectonics, 29(6), 1–30.
    [Google Scholar]
  59. Jolivet, M., Heilbronn, G., Robin, C., Barrier, L., Bourquin, S., Guo, Z., Jia, Y., Guerit, L., Yang, W. & Fu, B. (2013) Reconstructing the Late Palaeozoic — Mesozoic topographic evolution of the Chinese Tian Shan: available data and remaining uncertainties. Adv. Geosci., 37, 7–18.
    [Google Scholar]
  60. Jolivet, M., Barrier, L., Dominguez, S., Guerit, L., Heilbronn, G. & Fu, B. (2014) Unbalanced sediment budgets in the catchment–alluvial fan system of the Kuitun River (northern Tian Shan, China): implications for mass‐balance estimates, denudation and sedimentation rates in orogenic systems. Geomorphology, 214, 168–182.
    [Google Scholar]
  61. Kathayat, G., Cheng, H., Sinha, A., Spötl, C., Edwards, R.L., Zhang, H., Li, X., Yi, L., Ning, Y., Cai, Y., Lui, W.L. & Breitenbach, S.F.M. (2016) Indian monsoon variability on millennial‐orbital timescales. Sci. Rep., 6, 24374–24378.
    [Google Scholar]
  62. Lal, D. (1991) Cosmic‐ray labeling of erosion surfaces –in situ nuclide production‐rates and erosion models. Earth Planet. Sci. Lett., 104, 424–439.
    [Google Scholar]
  63. Leopold, L.B. & Bull, W.B. (1979) Base level, aggradation, and grade. Proc. Am. Philos. Soc., 123, 168–202.
    [Google Scholar]
  64. Li, C., Guo, Z. & Dupont‐Nivet, G. (2010) Late Cenozoic tectonic deformation across the northern foreland of the Chinese Tian Shan. J. Asian Earth Sci., 42(5), 1–8.
    [Google Scholar]
  65. Liu, Y., Métivier, F., Gaillardet, J., Ye, B., Meunier, P., Narteau, C., Lajeunesse, E., Han, T. & Malverti, L. (2011) Erosion rates deduced from seasonal mass balance along the upper Urumqi River in Tianshan. Solid Earth, 2(2), 283–301.
    [Google Scholar]
  66. Lu, H., Burbank, D.W. & Li, Y. (2010a) Alluvial sequence in the north piedmont of the Chinese Tian Shan over the past 550 kyr and its relationship to climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol., 285(3–4), 343–353.
    [Google Scholar]
  67. Lu, H., Burbank, D.W., Li, Y. & Liu, Y. (2010b) Late Cenozoic structural and stratigraphic evolution of the northern Chinese Tian Shan foreland. Basin Res., 22(3), 249–269.
    [Google Scholar]
  68. Lu, H., Zhang, W., Li, Y., Dong, C., Zhang, T., Zhou, Z. & Zheng, X. (2013) Rock magnetic properties and paleoenvironmental implications of an 8‐Ma Late Cenozoic terrigenous succession from the northern Tian Shan foreland basin, northwestern China. Global Planet. Change, 111, 43–56.
    [Google Scholar]
  69. Lu, H., Zhang, T., Zhao, J., Si, S., Wang, H., Chen, S. & Zheng, X. (2014) Late Quaternary alluvial sequence and uplift‐driven incision of the Urumqi River in the north front of the Tian Shan, northwestern China. Geomorphology, 219, 141–151.
    [Google Scholar]
  70. Mackin, J.H. (1948) Concept of the Graded River. Geol. Soc. Am. Bull., 59(5), 463–511.
    [Google Scholar]
  71. Malatesta, L.C., Prancevic, J.P. & Avouac, J.‐P. (2017) Autogenic entrenchment patterns and terraces due to coupling with lateral erosion in incising alluvial channels. J. Geophys. Res., series F, 122(1), 335–355.
    [Google Scholar]
  72. Métivier, F. (2002) On the use of sedimentation rates in deciphering global change. Geophys. Res. Lett., 29(15), 41‐1–41‐4.
    [Google Scholar]
  73. Métivier, F. & Gaudemer, Y. (1997) Mass transfer between eastern Tien Shan and adjacent basins (central Asia): constraints on regional tectonics and topography. Geophys. J. Int., 128(1), 1–17.
    [Google Scholar]
  74. Métivier, F. & Gaudemer, Y. (1999) Stability of output fluxes of large rivers in South and East Asia during the last 2 million years: implications on floodplain processes. Basin Res., 11(4), 293–303.
    [Google Scholar]
  75. Molnar, P. & England, P.C. (1990) Late Cenozoic uplift of mountain‐ranges and global climate change – chicken or egg. Nature, 346(6279), 29–34.
    [Google Scholar]
  76. Molnar, P., Brown, E.T., Burchfiel, B.C., Qidong, D., Xianyue, F., Jun, L., Raisbeck, G., Sianbang, S., Zhangming, W., Yiou, F. & Huichuan, Y. (1994) Quaternary climate‐change and the formation of river terraces across growing anticlines on the north flank of the Tien‐Shan, China. J. Geol., 102(5), 583–602.
    [Google Scholar]
  77. Nagashima, K., Tada, R., Tani, A., Sun, Y., Isozaki, Y., Toyoda, S. & Hasegawa, H. (2011) Millennial‐scale oscillations of the westerly jet path during the last glacial period. J. Asian Earth Sci., 40(6), 1214–1220.
    [Google Scholar]
  78. Neudorf, C.M., Roberts, R.G. & Jacobs, Z. (2012) Sources of overdispersion in a K‐rich feldpar sample from north‐central India: insights from, K content and IRSL age distributions for individual grains. Radiat. Meas., 47(9), 696–702.
    [Google Scholar]
  79. Nian, X., Bailey, R.M. & Zhou, L. (2012) Investigations of the post‐IR IRSL protocol applied to single K‐feldspar grains from fluvial sediment samples. Radiat. Meas., 47, 703–709.
    [Google Scholar]
  80. Nicholas, A.P. & Quine, T.A. (2007) Modeling alluvial landform change in the absence of external environmental forcing. Geology, 35(6), 527–530.
    [Google Scholar]
  81. Paola, C., Heller, P.L. & Angevine, C.L. (1992) The large‐scale dynamics of grain‐size variation in alluvial basins, 1: theory. Basin Res., 4(2), 73–90.
    [Google Scholar]
  82. Parker, G., Paola, C., Whipple, K.X. & Mohrig, D. (1998a) Alluvial fans formed by channelized fluvial and sheet flow. I: theory. J. Hydraul. Eng., 124(10), 985.
    [Google Scholar]
  83. Parker, G., Paola, C., Whipple, K.X., Mohrig, D., Toro‐Escobar, C.M., Halverson, M. & Skoglund, T.W. (1998b) Alluvial fans formed by channelized fluvial and sheet flow. II: application. J. Hydraul. Eng., 124(10), 996.
    [Google Scholar]
  84. Pepin, E., Carretier, S. & Herail, G. (2010) Erosion dynamics modelling in a coupled catchment‐fan system with constant external forcing. Geomorphology, 122, 78–90.
    [Google Scholar]
  85. Poisson, B. (2002) Impact du climat et de la tectonique sur l'évolution géomorphologique d'un piémont: exemple du piémont Nord du Tian Shan depuis la fin du Pléistocène. PhD Thesis, Université Paris XI.
  86. Poisson, B. & Avouac, J.‐P. (2004) Holocene hydrological changes inferred from alluvial stream entrenchment in North Tian Shan (Northwestern China). J. Geol., 112(2), 231–249.
    [Google Scholar]
  87. Puchol, N., Charreau, J., Blard, P.‐H., Lavé, J., Dominguez, S., Pik, R., Saint‐Carlier, D. & Team, A. (2016) Limited impact of Quaternary glaciations on denudation rates in Central Asia. Geol. Soc. Am. Bull., 129(3–4), 479–499.
    [Google Scholar]
  88. Reigber, C., Michel, G.W., Galas, R., Angermann, D., Klotz, J., Chen, J.Y., Papschev, A., Arslanov, R., Tzurkov, V.E. & Ishanov, M.C. (2001) New space geodetic constraints on the distribution of deformation in Central Asia. Earth Planet. Sci. Lett., 191(1–2), 157–165.
    [Google Scholar]
  89. Reimann, T., Thomsen, K.J., Jain, M., Murray, A.S. & Frechen, M. (2012) Single‐grain dating of young sediments using the pIRIR signal from feldspar. Quat. Geochronol., 11, 28–41.
    [Google Scholar]
  90. Rhodes, E.J. (2011) Optically stimulated luminescence dating of sediments over the past 200,000 years. Annu. Rev. Earth Planet. Sci., 39(1), 461–488.
    [Google Scholar]
  91. Rhodes, E.J. (2015) Dating sediments using potassium feldspar single‐grain IRSL: initial methodological considerations. Quatern. Int., 362, 14–22.
    [Google Scholar]
  92. Rhodes, T.E., Gasse, F., Lin, R., Fontes, J.‐C., Wei, K., Bertrand, P., Gibert, E., Mélières, F., Tucholka, P., Wang, Z. & Cheng, Z.‐Y. (1996) A late Pleistocene‐Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China). Palaeogeogr. Palaeoclimatol. Palaeoecol., 120(1–2), 105–121.
    [Google Scholar]
  93. Rohais, S., Bonnet, S. & Eschard, R. (2012) Sedimentary record of tectonic and climatic erosional perturbations in an experimental coupled catchment‐fan system. Basin Res., 24(2), 198–212.
    [Google Scholar]
  94. Romans, B.W., Castelltort, S., Covault, J.A. & Fildani, A. (2015) Environmental signal propagation in sedimentary systems across timescales. Earth Sci. Rev., 153, 7–29.
    [Google Scholar]
  95. Saint‐Carlier, D., Charreau, J., Lavé, J., Blard, P.‐H., Dominguez, S., Avouac, J.‐P. & Wang, S. (2016) Major temporal variations in shortening rate absorbed along a large active fold of the southeastern Tianshan piedmont (China). Earth Planet. Sci. Lett., 434, 333–348.
    [Google Scholar]
  96. Schneider, T., Bischoff, T. & Haug, G.H. (2014) Migrations and dynamics of the intertropical convergence zone. Nature, 513(7516), 45–53.
    [Google Scholar]
  97. Schumm, S.A. (1973) Geomorphic thresholds and complex response of drainage systems. In: Fluvial Geomorphology (Ed. by M.Morisawa ), pp. 299–310. State University of New York, Binghamton, NY.
    [Google Scholar]
  98. Simpson, G. & Castelltort, S. (2012) Model shows that rivers transmit high‐frequency climate cycles to the sedimentary record. Geology, 40, 1–4.
    [Google Scholar]
  99. Smedley, R.K., Duller, G.A.T., Pearce, N.J.G. & Roberts, H.M. (2012) Determining the K‐content of single‐grains of feldspar for luminescence dating. Radiat. Meas., 47(9), 790–796.
    [Google Scholar]
  100. Smith, G.S. & Ferguson, R.I. (1996) The gravel‐sand transition: flume study of channel response to reduced slope. Geomorphology, 16, 147–159.
    [Google Scholar]
  101. Sobel, E.R. & Dumitru, T.A. (1997) Thrusting and exhumation around the margins of the western Tarim basin during the India‐Asia collision. J. Geophys. Res., 102(B3), 5043–5063.
    [Google Scholar]
  102. Sorg, A., Bolch, T., Stoffel, M., Solomina, O. & Beniston, M. (2012) Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang., 2(10), 725–731.
    [Google Scholar]
  103. Stockmeyer, J.M., Shaw, J.H. & Guan, S. (2014) Seismic Hazards of Multisegment Thrust‐Fault Ruptures: insights from the 1906 Mw 7.4‐8.2 Manas, China, Earthquake. Seismol. Res. Lett., 85(4), 801–808.
    [Google Scholar]
  104. Stockmeyer, J.M., Shaw, J.H., Brown, N.D., Rhodes, E.J., Richardson, P.W., Wang, M., Lavin, L.C. & Guan, S. (2017) Active thrust sheet deformation over multiple rupture cycles: a quantitative basis for relating terrace folds to fault slip rates. Geol. Soc. Am. Bull., 129(9–10), 1337–1356.
    [Google Scholar]
  105. Stroeven, A.P., Hättestrand, C., Heyman, J., Kleman, J. & Morén, B.M. (2013) Glacial geomorphology of the Tian Shan. J Maps, 9(4), 505–512.
    [Google Scholar]
  106. Takeuchi, N., Fujita, K., Aizen, V.B., Narama, C., Yusuke, Y., Okamoto, S., Naoki, K. & Kubota, J. (2014) The disappearance of glaciers in the Tien Shan Mountains in Central Asia at the end of Pleistocene. Quatern. Sci. Rev., 103(C), 26–33.
    [Google Scholar]
  107. Tapponnier, P. & Molnar, P. (1979) Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia and Baykal regions. J. Geophys. Res., 84(NB7), 3425–3459.
    [Google Scholar]
  108. Thiel, C., Buylaert, J.‐P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto, S. & Frechen, M. (2011) Luminescence dating of the Stratzing loess profile (Austria) – testing the potential of an elevated temperature post‐IR IRSL protocol. Quatern. Int., 234(1–2), 23–31.
    [Google Scholar]
  109. Thompson, S.C., Abdrakhmatov, K., Weldon, R., Rubin, C.M., Molnar, P. & Berger, G.W. (2002) Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. J. Geophys. Res., 107(B9), ETG 7‐1–ETG 7‐32.
    [Google Scholar]
  110. Trauerstein, M., Lowick, S.E., Preusser, F. & Schlunegger, F. (2014) Small aliquot and single grain IRSL and post‐IR IRSL dating of fluvial and alluvial sediments from the Pativilca valley, Peru. Quat. Geochronol., 22, 163–174.
    [Google Scholar]
  111. Tucker, G.E. & Slingerland, R. (1997) Drainage basin responses to climate change. Water Resour. Res., 33(8), 2031–2047.
    [Google Scholar]
  112. Turowski, J.M., Rickenmann, D. & Dadson, S.J. (2010) The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. Sedimentology, 57(4), 1126–1146.
    [Google Scholar]
  113. Vaks, A., Gutareva, O.S., Breitenbach, S.F.M., Avirmed, E., Mason, A.J., Thomas, A.L., Osinzev, A.V., Kononov, A.M. & Henderson, G.M. (2013) Speleothems reveal 500,000‐year history of Siberian permafrost. Science, 340(6129), 183–186.
    [Google Scholar]
  114. Vandenberghe, J., Renssen, H., van Huissteden, K., Nugteren, G., Konert, M., Lu, H., Dodonov, A. & Buylaert, J.‐P. (2006) Penetration of Atlantic westerly winds into Central and East Asia. Quatern. Sci. Rev., 25, 2380–2389.
    [Google Scholar]
  115. Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C. & Dorale, J.A. (2001) A high‐resolution absolute‐dated late Pleistocene Monsoon record from Hulu Cave, China. Science, 294(5550), 2345–2348.
    [Google Scholar]
  116. Wang, C.‐Y., Yang, Z.‐E., Luo, H. & Mooney, W. (2004) Crustal structure of the northern margin of the eastern Tien Shan, China, and its tectonic implications for the 1906 M˜7.7 Manas earthquake. Earth Planet. Sci. Lett., 223(1–2), 187–202.
    [Google Scholar]
  117. Wang, Y., Cheng, H., Edwards, R.L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X. & An, Z. (2008) Millennial‐ and orbital‐scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451(7182), 1090–1093.
    [Google Scholar]
  118. Windley, B.F., Allen, M., Zhang, C., Zhao, Z. & Wang, G.R. (1990) Palaeozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia. Geology, 18(2), 128–131.
    [Google Scholar]
  119. Wolff, C., Plessen, B., Dudashvilli, A.S., Breitenbach, S.F., Cheng, H., Edwards, L.R. & Strecker, M.R. (2016) Precipitation evolution of Central Asia during the last 5000 years. The Holocene, 27(1), 142–154.
    [Google Scholar]
  120. Wolman, M.G. (1954) A method of sampling coarse river‐bed material. Trans. Am. Geophys. Union, 35, 951–956.
    [Google Scholar]
  121. Yang, X.‐P., Li, A. & Hunag, W. (2013) Uplift differential of active fold zones during the late Quaternary, northern piedmonts of the Tianshan Mountains, China. Sci. China Earth Sci., 56(794), 1–12.
    [Google Scholar]
  122. Yu, G., Harrison, S.P. & Xue, B. (2001) Lake status records from China: Data Base Documentation. Technical Report 4, Max Planck Institute für Biogeochemie, Jena, Germany.
  123. Zhang, P.Z., Molnar, P. & Downs, W.R. (2001) Increased sedimentation rates and grain sizes 2‐4 Myr ago due to the influence of climate change on erosion rates. Nature, 410(6831), 891–897.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12267
Loading
/content/journals/10.1111/bre.12267
Loading

Data & Media loading...

Supplements

Details of sampling location, methods, and data set of compiled ages.

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error