1887
Volume 16, Issue 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

The new far‐field low‐frequency electromagnetic method used the electromagnetic ground wave from distant radio transmitters at low frequencies to estimate temporal variations of factors affecting subsurface electrical conductivity averaged along the propagation path between either a transmitter and a receiver or two receivers that are in line with a transmitter. Phase and phase difference between two receivers depend on three factors that influence the changes in electrical conductivity: soil moisture, depth to the groundwater table and soil temperature. This dependence was investigated by simulations and evaluated by an experiment. The measurement layout was based on simulating ground wave propagation over a layered subsurface using the surface impedance method and the Sommerfeld ground wave attenuation function. A three‐layer model for the subsurface was used, which includes a soil layer, an unsaturated vadose zone and a saturated groundwater zone. The results of simulations at a frequency of 77.5 kHz showed that the phase of the ground wave is strongly influenced by natural variation of the above‐mentioned three factors; 77.5 kHz is the carrier frequency of the Normal Time Service Germany (DCF77) in Mainflingen/Germany, that was chosen as a source of the low‐frequency radio waves used in the experiment. Over a 2‐year measurement period, the amplitude and phase of the ground wave were recorded with two receivers, one 70 km and the other 110 km away from the transmitter. Additionally, phase difference between the two receivers was calculated. observations of soil moisture, depth to the groundwater table, and soil temperature along the transects under investigation were used to estimate phase and phase difference dependencies. Multiple regression analysis of the measured phase and phase difference revealed a strong dependence on the depth to the groundwater table and on soil temperature, whereas the impact of soil moisture on the phase and phase difference was found to be very low. Conversely, the relations obtained can be used to estimate the variation of the depth to the groundwater table, if the phase at a given frequency and the soil temperature information are available.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12009
2018-08-15
2024-03-29
Loading full text...

Full text loading...

References

  1. AryaS.P.2001. Introduction to Micrometeorology, 2nd edn. Academic Press, San Diego.
    [Google Scholar]
  2. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Transactions of AIME146, 54–62.
    [Google Scholar]
  3. BashkuevYu.B., DembelovM.G., KlimovN.N. and PopovA.M.1999. Radiowave scopy of the central part of the Baikal rift zone. In: Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes (ed. M.Hayakawa ), pp. 489–499. TERRA Scientific Publishing Company, Tokyo, Japan.
    [Google Scholar]
  4. BauchA., HetzelP., and PiesterD.2009. Zeit‐ und Frequenzverbreitung mit DCF77: 1959–2009 und darüber hinaus. PTB‐Mitteilungen119(3), 217–240. (In German).
    [Google Scholar]
  5. BradenH.1995. The model AMBETI: A detailed description of a soil‐plant‐atmosphere model. In: Berichte des Deutschen Wetterdienstes, Nr. 195 (ed. DeutscherWetterdienst ), pp. 1–117. DWD, Offenbach am Main. (In German).
    [Google Scholar]
  6. BrandelikA. and HübnerC. 2005. Method and device for determining properties of soil by means of transmission properties of an overhead line, e.g. an overhead electric cable. European Patent Nr. EP1565730.
  7. BrandelikA., HübnerC. and KottmeierC.2009. Verfahren zur Bestimmung von Eigenschaften des Erdreichs mit Hilfe von freien Radiowellen. Deutsches Patent Nr. 10 2008 002 892 B3. (In German).
  8. BW HES RLP
    BW HES RLP . 1999. Hydrogeologische Kartierung und Grundwasserbewirtschaftung im Rhein‐Neckar‐Raum. Fortschreibung 1983–1998. Ministerium für Umwelt und Verkehr Baden‐Württemberg, Hessisches Ministerium für Umwelt, Landwirtschaft und Forsten, Ministerium für Umwelt und Forsten Rheinland‐Pfalz. Stuttgart – Wiesbaden – Mainz. (In German).
  9. BW RLP
    BW RLP . 2007. Hydrogeologische Kartierung und Grundwasserbewirtschaftung im Raum Karlsruhe‐Speyer. Fortschreibung 1986–2005. Umweltministerium Baden‐Württemberg, Ministerium für Umwelt, Forsten und Verbraucherschutz Rheinland‐Pfalz. Stuttgart – Mainz. (In German).
  10. DurlesserH.1999. Bestimmung der Variation bodenphysikalischer Parameter in Raum und Zeit mit elektromagnetischen Induktionsverfahren. Shaker, Aachen.
    [Google Scholar]
  11. FeinbergE.L.1961. Propagation of Radio Waves Along the Surface of the Earth. Izdatelstvo Akademii Nauk, Moscow SSR. (In Russian).
    [Google Scholar]
  12. FengY. and AstinI.2015. Remote sensing of soil moisture using the propagation of Loran‐C navigation signals. IEEE Geoscience and Remote Sensing Letters12(1), 195–198.
    [Google Scholar]
  13. FockV.A.1965. Theory of radiowave propagation in an inhomogeneous (stratified) atmosphere for a raised source. In: Electromagnetic Diffraction and Propagation Problems, pp. 276–307. Pergamon Press, Oxford.
    [Google Scholar]
  14. FrieseW.2006. Raum‐ und Bodenwellen in einer Langzeit‐Messung. Funkamateur55(12), 1386–1389. (In German).
    [Google Scholar]
  15. GalejsJ.1972. Terrestrial Propagation of Long Electromagnetic Waves. International Series of Monographs in Electromagnetic Waves. Pergamon Press.
    [Google Scholar]
  16. HübnerC., KottmeierC. and BrandelikA.2011. A new approach towards large scale soil moisture mapping by radio waves. Sensing and Imaging. 12(1‐2), 1–13.
    [Google Scholar]
  17. HuffordG.A.1952. An integral equation approach to the problem of wave propagation over an irregular surface. Quarterly of Applied Mathematics9, 391–404.
    [Google Scholar]
  18. ITU‐R
    ITU‐R . 1992. Recommendation P.368‐7: Ground‐wave propagation curves for frequencies between 10 kHz and 30 MHz. United Nations specialized agency for information and communication technologies.
  19. JacksonT.J., CoshM.H., BindlishR., StarksP.J., BoschD.D., SeyfriedM., et al. 2010. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, 48(12), 4256–4272.
    [Google Scholar]
  20. KingR.J. and SchlakG.A.1966. The ground‐wave attenuation function for propagation over a highly inductive surface. Scientific Report No. 37. Electrical Engineering Department. University of Colorado.
  21. KnödelK., LangeG. and VoigtH‐J.2007. Environmental Geology: Handbook of Field Methods and Case Studies. Springer, Berlin, Germany.
    [Google Scholar]
  22. KönigerF., SchmittG., SchuhmannR. and KottmeierCh.2010. “Free Line Sensing”, a new method for soil moisture measurements using high‐voltage power lines. Near Surface Geophysics8, 151–161.
    [Google Scholar]
  23. LUBW
    LUBW . 2007. Wasser– und Bodenatlas Baden‐Württemberg. Umweltministerium Baden‐Württemberg, Landesanstalt für Umwelt, Messungen und Naturschutz Baden‐Württemberg. Karlsruhe. (In German).
  24. LUBW
    LUBW . 2014. Grundwasserüberwachungsprogramm. Ergebnisse der Beprobung 2013 (Fachbericht N 49). Hrsg. Landesanstalt für Umwelt, Messungen und Naturschutz Baden‐Württemberg. Karlsruhe. (In German).
  25. LUBW
    LUBW . 2015. Grundwasserüberwachungsprogramm. Ergebnisse der Beprobung 2014 (Fachbericht N 51). Hrsg. Landesanstalt für Umwelt, Messungen und Naturschutz Baden‐Württemberg. Karlsruhe. (In German).
  26. LöpmeierF.‐J.1994. Berechnung der Bodenfeuchte und Verdunstung mittels agrarmeteorologischer Modelle. Zeitschrift für Bewässerungswirtschaft29, 157–167. (In German).
    [Google Scholar]
  27. MakarovG.I., NovikovV.V. and RybachekS.T.1991. Propagation of Electromagnetic Waves Over Earth's Surface. Nauka, Moscow. (In Russian).
    [Google Scholar]
  28. Meyer de Stadelhofen, C.1994. Anwendung geophysikalischer Methoden in der Hydrogeologie. Springer, Berlin. (In German).
    [Google Scholar]
  29. MüllerK.H.1984. Geographische Grundlagen Hessens. In: Geschichtlicher Atlas von Hessen: Text‐ und Erläuterungsband (ed. F.Schwind ), pp. 1–19. Hessisches Landesamt für geschichtliche Landeskunde, Marburg/Lahn. (In German).
    [Google Scholar]
  30. NortonK.A.1936. The propagation of radio waves over the surface of the Earth and in the upper atmosphere. Proceedings of the IRE24(10), 1367–1387.
    [Google Scholar]
  31. PaulW.2002. Permittivitätmessungen im Boden zur Bestimmung von Düngezuständen. Landbauforschung Völkenrode2(52), 97–106. (In German).
    [Google Scholar]
  32. von PapeW.‐P.2006. Landesgrundwasserdienst in Hessen. In: Jahresbericht 2005 des Hessischen Landesamtes für Umwelt und Geologie (Hrsg. Hessisches Landesamtes für Umwelt und Geologie). Wiesbaden.
    [Google Scholar]
  33. RahmanM., SulisM. and KolletS. J.2016. Evaluating the dual boundary forcing concept in the subsurface‐land surface interactions of the hydrological cycle. Hydrological Processes30, 1563–1573.
    [Google Scholar]
  34. RhoadesJ.D., Chanduvi and LeschS.1999. Soil salinity assessment: Methods and interpretation of electrical conductivity measurements. FAO Irrigation and Drainage Paper 57.
  35. SchefticW.D., CumminsK.L., KriderE.P., SternbergB.K., GoodrichD., MoranS. and ScottR.2008. Wide‐area soil moisture estimation using the propagation of lightning generated low‐frequency electromagnetic signals. 20th International Lightning Detection Conference, Tucson, AZ, USA, Expanded Abstracts, 1–8.
  36. SchlaegerS., HübnerCh. and BeckerR.2005. Simple soil moisture probe for low‐cost measurement applications. Proceedings of the 6th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, ISEMA 2005, Weimar, Germany, pp. 258–265.
  37. SenP.N., GoddeP.A. and SibbitA.1988. Electrical conduction in clay bearing sandstones at low and high salinities. Journal of Applied Physics63, 4832–4840.
    [Google Scholar]
  38. Sheets, K.R. and HendrickxJ.M.H.1995. Non‐invasive soil water content measurement using electromagnetic induction. Water Resources Research45, 2401–2409.
    [Google Scholar]
  39. SlavichP.G. and PettersonG.H.1990. Estimating average root zone salinity from electromagnetic induction (EM38) measurement. Australian Journal of Soil Research28, 453–463.
    [Google Scholar]
  40. Sommerfeld, A.1909. Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Annalen der Physik28, 665–736. (In German).
    [Google Scholar]
  41. SsymankA.1994. Neue Anforderungen im europäischen Naturschutz: Das Schutzgebietssystem Natura 2000 und die FFH‐Richtlinie der EU. Natur und Landschaft69(9), 395–406. (In German).
    [Google Scholar]
  42. Van der PolВ. and BremmerН.1937. The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with application to radiotelegraphy and the theory of rainbow. Philosophical Magazine95, 141–176.
    [Google Scholar]
  43. Van der PolВ. and NiessenK. F.1930. Über die Ausbreitung elektromagnetischer Wellen über eine ebene Erde. Annalen der Physik6, 273–294.
    [Google Scholar]
  44. WaitJ. R.1962. Electromagnetic Waves in Stratified Media. Pergamon Press, New York.
    [Google Scholar]
  45. WaitJ. R.1998. The ancient and modern history of EM ground‐wave propagation. IEEE Antennas and Propagation Magazine40(5), 7–24.
    [Google Scholar]
  46. WatsonG.N.1918. The transmission of electric waves by the earth. Proceedings of the Royal Society95, 83–99.
    [Google Scholar]
  47. WaxmanM.H. and SmitsL.J.M.1968. Electrical conductivities in oil‐bearing shaly sands. Society of Petroleum Engineers Journal, 8, 107–122.
    [Google Scholar]
  48. WestmanH.P.
    (ed). 1962. Reference Data for Radio Engineers, 4th edn.Stratford Press Incorporated, New York.
    [Google Scholar]
  49. WorthingtonP.F.1977. Influence of matrix conduction upon hydrogeophysical relationships in arenaceous aquifers. Water Resources Research13(1), 87–92.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12009
Loading
/content/journals/10.1002/nsg.12009
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Depth to the groundwater table; Ground wave propagation; Soil moisture

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error