1887
Volume 66, Issue 7
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Subsurface rocks (e.g. shale) may induce seismic anisotropy, such as transverse isotropy. Traveltime computation is an essential component of depth imaging and tomography in transversely isotropic media. It is natural to compute the traveltime using the wavefront marching method. However, tracking the 3D wavefront is expensive, especially in anisotropic media. Besides, the wavefront marching method usually computes the traveltime using the eikonal equation. However, the anisotropic eikonal equation is highly non‐linear and it is challenging to solve. To address these issues, we present a layer‐by‐layer wavefront marching method to compute the P‐wave traveltime in 3D transversely isotropic media. To simplify the wavefront tracking, it uses the traveltime of the previous depth as the boundary condition to compute that of the next depth based on the wavefront marching. A strategy of traveltime computation is designed to guarantee the causality of wave propagation. To avoid solving the non‐linear eikonal equation, it updates traveltime along the expanding wavefront by Fermat's principle. To compute the traveltime using Fermat's principle, an approximate group velocity with high accuracy in transversely isotropic media is adopted to describe the ray propagation. Numerical examples on 3D vertical transverse isotropy and tilted transverse isotropy models show that the proposed method computes the traveltime with high accuracy. It can find applications in modelling and depth migration.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12649
2018-06-04
2024-04-19
Loading full text...

Full text loading...

References

  1. AlkhalifahT.1998. Acoustic approximations for processing in transversely isotropic media. Geophysics63, 623–631.
    [Google Scholar]
  2. AlkhalifahT.2000a. An acoustic wave equation for anisotropic media. Geophysics65, 1239–1250.
    [Google Scholar]
  3. AlkhalifahT.2000b. The offset‐midpoint traveltime pyramid in transversely isotropic media. Geophysics65, 1316–1325.
    [Google Scholar]
  4. AlkhalifahT.2002. Traveltime computation with the linearized eikonal equation for anisotropic media. Geophysical Prospecting50, 373–382.
    [Google Scholar]
  5. AlkhalifahT.2011a. Scanning anisotropy parameters in complex media. Geophysics76, U13–U22.
    [Google Scholar]
  6. AlkhalifahT.2011b. Traveltime approximations for transversely isotropic media with an inhomogeneous background. Geophysics76, WA31–WA42.
    [Google Scholar]
  7. AlkhalifahT. and TsvankinI.1995. Velocity analysis for transversely isotropic media. Geophysics60, 1550–1566.
    [Google Scholar]
  8. CaoS. and GreenhalghS.A.1994. Finite‐difference solution of the eikonal equation using an efficient, first‐arrival wavefront tracking scheme. Geophysics59, 632–643.
    [Google Scholar]
  9. CervenyV.2001. Seismic Ray Theory. Cambridge University Press.
    [Google Scholar]
  10. DellingerJ., MuirF. and KarrenbachM.1993. Anelliptic approximations for TI media. Journal of Seismic Exploration2, 23–40.
    [Google Scholar]
  11. FariaE.L. and StoffaP.L.1994. Traveltime computation in transversely isotropic media. Geophysics59, 272–281.
    [Google Scholar]
  12. FarraV. and PsencikI.2013. Moveout approximations for P and SV waves in VTI media. Geophysics78, WC81–WC92.
    [Google Scholar]
  13. FomelS.2004. On anelliptic approximations for qP velocities in VTI media. Geophysical Prospecting52, 247–259.
    [Google Scholar]
  14. FomelS., LuoS. and ZhaoH.2009. Fast sweeping method for the factored eikonal equation. Journal of Computational Physics228, 6440–6455.
    [Google Scholar]
  15. FomelS. and StovasA.2010. Generalized nonhyperbolic moveout approximation. Geophysics75, U9–U18.
    [Google Scholar]
  16. HaoQ. and StovasA.2015. The offset‐midpoint traveltime pyramid in 2D transversely isotropic media with a tilted symmetry axis. Geophysical Prospecting63, 587–596.
    [Google Scholar]
  17. HaoQ. and StovasA.2016. Analytic calculation of phase and group velocities of P‐waves in orthorhombic media. Geophysics81, C79–C97.
    [Google Scholar]
  18. HaoQ., StovasA. and AlkhalifahT.2015. The offset‐midpoint traveltime pyramid in 3D transversely isotropic media with a horizontal symmetry axis. Geophysics80, T51–T62.
    [Google Scholar]
  19. HaoQ., StovasA. and AlkhalifahT.2016. The offset‐midpoint traveltime pyramid of P‐waves in orthorhombic media. Geophysics81, C151–C162.
    [Google Scholar]
  20. HuJ.T., CaoJ.X., WangH.Z., LiuS.Y. and WangX.J.2018. 3D traveltime computation for quasi‐P wave in orthorhombic media using dynamic programming. Geophysics83, C27–C35.
    [Google Scholar]
  21. HuJ.T., CaoJ.X., WangH.Z., WangX.J. and JiangX.D.2017. First‐arrival traveltime computation in transversely isotropic media using Fermat's principle based fast marching. Journal of Geophysics and Engineering14, 1484–1491.
    [Google Scholar]
  22. KimS. and CookR.1999. 3‐D traveltime computation using second‐order ENO scheme. Geophysics64, 1867–1876.
    [Google Scholar]
  23. KumarD., SenM.K. and FergusonR.J.2004. Traveltime calculation and prestack depth migration in tilted transversely isotropic media. Geophysics69, 37–44.
    [Google Scholar]
  24. LambareG., LucioP.S. and HanygaA.1996. Two‐dimensional multivalued traveltime and amplitude maps by uniform sampling of a ray field. Geophysical Journal International125, 584–598.
    [Google Scholar]
  25. LiuS.Y., WangH.Z., YangQ.Y. and FangW.B.2014. Traveltime computation and imaging from rugged topography in 3D TTI media. Journal of Geophysics and Engineering11, 1–9.
    [Google Scholar]
  26. MaX. and AlkhalifahT.2013. qP wave traveltime computation by an iterative approach. 75th Annual International Conference and Exhibition, London, Extended Abstracts, WE0209, EAGE, the Netherlands.
  27. MuirF. and DellingerJ.1985. A practical anisotropic system. Stanford Exploration Project44, 55–58.
    [Google Scholar]
  28. NocedalJ. and WrightS.2000. Numerical Optimization. Springer.
    [Google Scholar]
  29. PodvinP. and LecomteI.1991. Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International105, 271–284.
    [Google Scholar]
  30. PopoviciA.M. and SethianJ.A.2002. 3D imaging using higher order fast marching traveltimes. Geophysics67, 604–609.
    [Google Scholar]
  31. QianJ.L. and SymesW.2002. Finite‐difference quasi‐P traveltime for anisotropic media. Geophysics76, U35–U43.
    [Google Scholar]
  32. QinF., LuoY., OlsenK.B. and SchusterG.T.1992. Finite‐difference solution of the eikonal equation along expanding wavefronts. Geophysics57, 478–87.
    [Google Scholar]
  33. SchneiderW.A.2003. Linearization of the P‐wave eikonal equation for weak vertical transverse isotropy. Geophysics68, 1075–1082.
    [Google Scholar]
  34. SchneiderW.A.J., RanzingerK., BalchA. and KruseC.1992. A dynamic programming approach to first‐arrival traveltime computation in media with arbitrarily distributed velocities. Geophysics57, 39–50.
    [Google Scholar]
  35. SethianJ. and PopoviciA.1999. 3‐D traveltime computation using the fast marching method. Geophysics64, 516–523.
    [Google Scholar]
  36. SripanichY. and FomelS.2015. On anelliptic approximations for qP velocities in transversely isotropic and orthorhombic media. Geophysics80, C89–C105.
    [Google Scholar]
  37. StovasA.2010. Generalized moveout approximation for qP‐ and qSVwaves in a homogeneous transversely isotropic medium. Geophysics75, D79–D84.
    [Google Scholar]
  38. StovasA. and AlkhalifahT.2012. A new traveltime approximation for TI media. Geophysics77, C37–C42.
    [Google Scholar]
  39. SunJ.G., SunZ.Q. and HanF.X.2011. A finite difference scheme for solving the eikonal equation including surface topography. Geophysics76, T53‐63.
    [Google Scholar]
  40. SunZ.Q., SunJ.G. and HanF.X.2009. Traveltimes computation using linear interpolation and narrow band technique under complex topographical conditions. Chinese Journal of Geophysics52, 2846–2853.
    [Google Scholar]
  41. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  42. TsvankinI.1996. P‐wave signatures and notation for transversely isotropic media: an overview. Geophysics61, 467–483.
    [Google Scholar]
  43. TsvankinI.2001. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media. Elsevier Science.
    [Google Scholar]
  44. VidaleJ.E.1988. Finite‐difference calculation of travel times. Bulletin Seismic Society of America78, 2062–2076.
    [Google Scholar]
  45. VinjeV., IversenE. and GjoystdalE.1993. Traveltime and amplitude estimation using wavefront construction. Geophysics58, 1157–1166.
    [Google Scholar]
  46. WaheedU. and AlkhalifahT.2017. Fast sweeping algorithm for accurate solution of the TTI eikonal equation using factorization. Geophysics82, 1–43.
    [Google Scholar]
  47. WaheedU., AlkhalifahT. and WangH.2015. Efficient traveltime solutions of the acoustic TI eikonal equation. Journal of Computational Physics282, 62–76.
    [Google Scholar]
  48. WaheedU., YarmanC.E. and FlaggG.2015. An iterative, fast‐sweeping‐based eikonal solver for 3D tilted anisotropic media. Geophysics80, C49–C58.
    [Google Scholar]
  49. WangH.Z., MaZ.T. and HubralP.1999. Traveltime calculationin 3D media with arbitrary velocity distribution. 69th Annual International Meeting, SEG, Expanded Abstracts, 1263–1266.
  50. ZhangF. and UrenN.2001. Approximate explicit ray velocity functions and travel times for P‐waves in TI media. 71st Annual International Meeting, SEG, San Antonio, TX, Expanded Abstracts, 106–109.
  51. ZhangY., ZhangH. and ZhangG.2011. A stable TTI reverse time migration and its implementation. Geophysics76, WA3–WA9.
    [Google Scholar]
  52. ZhaoH.2005. A fast sweeping method for eikonal equations. Mathematics of Computation74, 603–628.
    [Google Scholar]
  53. ZhuT.F. and CheadleS.1999. A grid raytracing method for near‐surface traveltime modelling. 69th Annual International Meeting, SEG, Expanded Abstracts, 1759–1762.
  54. ZhuT.F., GrayS.H. and WangD.L.2007. Prestack Gaussian‐beam depth migration in anisotropic media. Geophysics72, S133–S138.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12649
Loading
/content/journals/10.1111/1365-2478.12649
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error