1887
Volume 30, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The Holocene stratigraphy of Sylhet basin, a tectonically influenced sub‐basin within the Ganges‐Brahmaputra‐Meghna delta (GMBD), provides evidence for autogenic and allogenic controls on fluvial system behaviour. Using Holocene lithology and stratigraphic architecture from a dense borehole network, patterns of bypass‐dominated and extraction‐enhanced modes of sediment transport and deposition have been reconstructed. During a ~3‐kyr mid‐Holocene occupation of Sylhet basin by the Brahmaputra River, water and sediment were initially (~7.5–6.0 ka) routed along the basin's western margin, where limited downstream facies changes reflect minimal mass extraction and bypass‐dominated transport to the basin outlet. Sediment‐dispersal patterns became increasingly depositional ~6.0–5.5 ka with the activation of a large (~2250 km2) splay that prograded towards the basin centre while maintaining continued bypass along the western pathway. Beginning ~5.0 ka, a second splay system constructed an even larger (~3800 km2) lobe into the most distal portions of the basin along the Shillong foredeep. This evolution from a bypass‐dominated system to one of enhanced mass extraction is well reflected in (i) the rapid downstream fining of deposited sand and (ii) a change in facies from amalgamated channel deposits to mixed sands and muds within discrete depositional lobes. The persistence of sediment bypass suggests that seasonal flooding of the basin by local runoff exerts a hydrologic barrier to overbank flow and is thus a principal control on river path selection. This control is evidenced by (i) repeated, long‐term preference for occupying a course along the basin margin rather than a steeper path to the basin centre and (ii) the persistence of an under‐filled, topographically low basin despite sediment load sufficient to fill the basin within a few hundred years. The progradation of two 10–20‐m thick, sandy mega‐splays into the basin interior reflects an alternative mode of sediment dispersal that appears to have operated only in the mid‐Holocene (~6.0–4.0 ka) during a regional weakening of the summer monsoon. The reduced water budget at that time would have lowered seasonal water levels in the basin, temporarily lessening the hydrologic barrier effect and facilitating splay development into the basin interior. Overall, these results place basin hydrology as a first‐order control on fluvial system behaviour, strongly modifying the perceived dominance of tectonic subsidence. Such coupling of subsidence, fluvial dynamics and local hydrology have been explored through tank experiments and modelling; this field study demonstrates that complex, emergent behaviours can also scale to the world's largest fluvial system.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12254
2017-09-20
2024-03-29
Loading full text...

Full text loading...

References

  1. Aalto, R., Maurice‐Bourgoin, L., Dunne, T., Montgomery, D.R., Nittrouer, C.A. & Guyot, J.‐L. (2003) Episodic sediment accumulation on Amazonian flood plains influenced by El Nino/Southern Oscillation. Nature, 425, 493–496.
    [Google Scholar]
  2. Armitage, J.J., Duller, R.A., Whittaker, A.C. & Allen, P.A. (2011) Transformation of tectonic and climatic signals from source to sedimentary archive. Nat. Geosci., 4, 231–235.
    [Google Scholar]
  3. Best, J.L., Ashworth, P.J., Sarker, M.H. & Roden, J.E. (2007) The Brahmaputra‐Jamuna River, Bangladesh. In: Large Rivers: Geomorphology and Management (Ed. by A.Gupta ), pp. 395–433. Wiley & Sons, London.
    [Google Scholar]
  4. Biswas, S., Coutand, I., Grujic, D., Hager, C., Stockli, D. & Grasemann, B. (2007) Exhumation and uplift of the Shillong plateau and its influence on the eastern Himalayas: new constraints from apatite and zircon (U‐Th‐[Sm])/He and apatite fission track analyses. Tectonics, 26(6), TC6013. https://doi.org/10.1029/2007TC002125.
    [Google Scholar]
  5. Bookhagen, B., Fleitmann, D., Nishiizumi, K., Strecker, M.R. & Thiede, R.C. (2006) Holocene monsoonal dynamics and fluvial terrace formation in the northwest Himalaya, India. Geology, 34(7), 601–604.
    [Google Scholar]
  6. Clark, M.K. & Bilham, R. (2008) Miocene rise of the Shillong Plateau and the beginning of the end for the Eastern Himalaya. Earth Planet. Sci. Lett., 269, 337–351.
    [Google Scholar]
  7. Curray, J.R. (1994) Sediment volume and mass beneath the Bay of Bengal. Earth Planet. Sci. Lett., 125, 371–383.
    [Google Scholar]
  8. Day, M.B., Hodell, D.A., Brenner, M., Curtis, J.H., Kamenov, G.D., Guilderson, T.P., Peterson, L.C., Kenney, W.F. & Kolata, A.L. (2011) Middle to late Holocene initiation of the annual flood pulse in Tonle Sap Lake, Cambodia. J. Paleolimnol., 45, 85–99.
    [Google Scholar]
  9. Duller, R.A., Whittaker, A.C., Fedele, J.J., Whitchurch, A.L., Springett, J., Smithells, R., Fordyce, S. & Allen, P.A. (2010) From grain size to tectonics. J. Geophys. Res., 115, FO3022.
    [Google Scholar]
  10. Dunne, T., Mertes, L.A.K., Meade, R.H., Richey, J.E. & Forsberg, B.R. (1998) Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geol. Soc. Am. Bull., 110, 450–467.
    [Google Scholar]
  11. Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z. & Revenaugh, J. (2005) A high‐resolution, absolute‐dated Holocene and deglacial Asian monsoon record from Dongge Cave, Chine. Earth Planet. Sci. Lett., 233, 71–86.
    [Google Scholar]
  12. Fergusson, J. (1863) On recent changes in the delta of the Ganges. J. Geol. Soc. London, 19, 322–354.
    [Google Scholar]
  13. Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al‐Subbary, A.A., Buettner, A., Hippler, D. & Matter, A. (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quatern. Sci. Rev., 26, 170–188.
    [Google Scholar]
  14. Flood Action Plan (FAP‐6)
    Flood Action Plan (FAP‐6) . (1993). North‐Eastern Regional Water Management Project. Fisheries Specialist Report, Government of the Peoples Republic of Bangladesh, Bangladesh Water Development Board and Flood Plan Co‐ordination Organization, Dhaka. Final Report, 291pp.
  15. Fujii, H., Garsdal, H., Ward, P., Ishii, M., Morishita, K. & Boivin, T. (2003) Hydrological roles of the Cambodian floodplain of the Mekong River. Int. J. River Basin Management, 1(3), 253–266.
    [Google Scholar]
  16. Galy, A. & France‐Lanord, C. (2001) Higher erosion rates in the Himalaya: geochemical constraints of the riverine fluxes. Geology, 29, 23–26.
    [Google Scholar]
  17. Garzanti, E., Ando, S., France‐Lanord, C., Vezzoli, G., Censi, P., Galy, V. & Najman, Y. (2010) Mineralogical and chemical variability of fluvial sediments: 1. Bedload sand (Ganga‐Brahmaputra, Bangladesh). Earth Planet. Sci. Lett., 299, 368–381.
    [Google Scholar]
  18. Goodbred, S.L. & Kuehl, S.A. (1998) Floodplain processes in the Bengal Basin and the storage of Ganges‐Brahmaputra river sediment: an accretion study using 137Cs and 210Pb geochronology. Sed. Geol., 121, 239–258.
    [Google Scholar]
  19. Goodbred, S.L. & Kuehl, S.A. (2000a) The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges‐Brahmaputra delta. Sed. Geol., 133(3–4), 227–248.
    [Google Scholar]
  20. Goodbred, S.L. & Kuehl, S.A. (2000b) Enormous Ganges‐Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology, 28(12), 1083–1086.
    [Google Scholar]
  21. Goodbred, S.L., Kuehl, S.A., Steckler, M.S. & Sarker, M.H. (2003) Controls on facies distribution and stratigraphic preservation in the Ganges‐Brahmaputra delta sequence. Sed. Geol., 155(3–4), 301–316.
    [Google Scholar]
  22. Goodbred, S.L., Paolo, P.M., Ullah, M.S., Pate, R.D., Khan, S.R., Kuehl, S.A., Singh, S.K. & Rahaman, W. (2014) Piecing together the Ganges‐Brahmaputra‐Meghna River delta: use of sediment provenance to reconstruct the history and interaction of multiple fluvial systems during Holocene delta evolution. Geol. Soc. Am. Bull., 126(11–12), 1495–1510.
    [Google Scholar]
  23. Hajek, E.A. & Wolinski, M.A. (2012) Simplified process modeling of river avulsion and alluvial architecture: connecting models and field data. Sed. Geol., 257, 1–30.
    [Google Scholar]
  24. Hickson, T.A., Sheets, B.A., Paola, C. & Kelberer, M. (2005) Experimental Test of Tectonic Controls on Three‐Dimensional Alluvial Facies Architecture. J. Sediment. Res., 75(4), 710–722.
    [Google Scholar]
  25. Hoque, M.A., McArthur, J.M. & Sikdar, P.K. (2014) Sources of low‐arsenic groundwater in the Bengal Basin: investigating the influence of the last glacial maximum palaeosol using a 115‐km traverse across Bangladesh. Hydrogeol. J., 22(7), 1535–1547.
    [Google Scholar]
  26. Hu, C., Henderson, G.M., Huang, J., Xie, S., Sun, Y. & Johnson, K.R. (2008) Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett., 266, 221–232.
    [Google Scholar]
  27. Jahan, S.H. (2010) Archeology of Wari‐Bateshwar. Ancient. Asia, 2, 135–146.
    [Google Scholar]
  28. Jerolmack, D.J. & Paola, C. (2010) Shredding of environmental signals by sediment transport. Geophys. Res. Lett., 37, L19405.
    [Google Scholar]
  29. Johnson, S.Y. & Alam, A.N. (1991) Sedimentation and tectonics of the Sylhet trough, Bangladesh. Geol. Soc. Am. Bull., 103, 1513–1527.
    [Google Scholar]
  30. Junk, W.J. (1997) The Central Amazon floodplain, p. 525. Springer‐Verlag, Heidelberg.
    [Google Scholar]
  31. Kim, W., Petter, A., Straub, K. & Mohrig, D. (2014). Investigating the autogenic process response to allogenic forcing: Experimental geomorphology and stratigraphy. In: Depositional Systems to Sedimentary Successions on the Norwegian Continental Shelf (Ed. by A. W.Martinius , R.Ravnas , J. A.Howell , R. J.Steel & J. P.Wonham ), (Vol. 46, pp. 127–138). John Wiley & Sons, Ltd, West Sussex, UK.
    [Google Scholar]
  32. Kummu, M., Tes, S., Yin, S., Adamson, P., Jozsa, J., Koponen, J., Richey, J. & Sarkkula, J. (2014) Water balance analysis for the Tonle Sap Lake‐floodplain system. Hydrol. Process., 28, 1722–1733.
    [Google Scholar]
  33. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. (2014) Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci., 111(43), 15296–15303.
    [Google Scholar]
  34. Lang, K.A., Huntington, K.W. & Montgomery, D.R. (2013). Erosion of the Tsangpo Gorge by megafloods, Eastern Himalaya. Geology, https://doi.org/10.1130/g34693.1.
  35. Li, Q., Lu, L. & Straub, K.M. (2016) Storage thresholds for relative sea‐level signals in the stratigraphic record. Geology, 44(3), 179–182. https://doi.org/10.1130/G37484.1.
    [Google Scholar]
  36. Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlen, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee‐Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R. & Steig, E.J. (2004) Holocene climate variability. Quatern. Res., 62, 243–255.
    [Google Scholar]
  37. McArthur, J.M., Nath, B., Banerjee, D.M., Purohit, R. & Grassineau, N. (2011) Palaeosol Control on Groundwater Flow and Pollutant Distribution: the Example of Arsenic. Environ. Sci. Technol., 45(4), 1376–1383.
    [Google Scholar]
  38. Montgomery, D.R., Hallet, B., Yuping, L., Finnegan, N., Anders, A., Gillespie, A. & Greenberg, H.M. (2004) Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet. Quatern. Res., 62, 201–207.
    [Google Scholar]
  39. Morgan, J.P. & McIntire, W.G. (1959) Quaternary geology of the Bengal Basin, east Pakistan and India. Geol. Soc. Am. Bull., 70, 319–342.
    [Google Scholar]
  40. Nagumo, N., Sugai, T. & Kubo, S. (2013) Late Quaternary floodplain development along the Stung Sen River in the Lower Mekong Basin, Cambodia. Geomorphology, 198, 84–95.
    [Google Scholar]
  41. Najman, Y., Bracciali, L., Parrish, R.P., Chisty, E. & Copley, A. (2016) Evolving strain partitioning in the Eastern Himalaya: the growth of the Shillong Plateau. Earth Planet. Sci. Lett., 433, 1–9.
    [Google Scholar]
  42. Paola, C., Straub, K., Mohrig, D. & Reinhardt, L. (2009) The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth‐Sci. Rev., 97(1–4), 1–43.
    [Google Scholar]
  43. Patrick, M. (2016) Stratigraphic evolution of the Ganges‐Brahmaputra lower delta plain and its relation to groundwater arsenic distributions. Unpublished Masters thesis, Vanderbilt University, Nashville, TN.
  44. Penny, D. (2006) The Holocene history and development of the Tonle Sap, Cambodia. Quatern. Sci. Rev., 25, 310–322.
    [Google Scholar]
  45. Pickering, J.L. (2016). Response of the Brahmaputra River to tectonic deformation and paleohydrological events in the foreland Bengal Basin. Unpublished Ph.D. dissertation, Vanderbilt University.
  46. Pickering, J.L., Goodbred, S.L., Reitz, M.D., Hartzog, T.R., Mondal, D.R. & Hossain, M.S. (2014) Late Quaternary sedimentary record and Holocene channel avulsions of the Jamuna and Old Brahmaputra River valleys in the upper Bengal delta plain. Geomorphology, 227, 123–136.
    [Google Scholar]
  47. Pratt‐Sitaula, B., Burbank, D.W., Heimsath, A. & Ojha, T. (2004) Landscape disequilibrium on 1000‐10,000 year scales Marsyandi River, Nepal, and central Himalaya. Geomorphology, 58, 223–241.
    [Google Scholar]
  48. Rashid, T., Monsur, H. & Suzuki, S. (2006). A Review on the Quaternary Characteristics of Pleistocene Tracts of Bangladesh. Okayama University Earth Science Reports, 13 (1–13).
  49. Ravenscroft, P., Burgess, W.G., Ahmed, K.M., Burren, M. & Perrin, J. (2005) Arsenic in groundwater of the Bengal Basin, Bangladesh: distribution, field relations, and hydrogeological setting. Hydrogeol. J., 13(5), 727–751.
    [Google Scholar]
  50. Reitz, M.D., Pickering, J.L., Goodbred, S.L., Paola, C., Steckler, M.S., Seeber, L. & Akhter, S.H. (2015) Effects of tectonic deformation and sea level on river path selection: theory and application to the Ganges‐Brahmaputra‐Meghna River Delta. J. Geophys. Res., series F, 120, 671–689.
    [Google Scholar]
  51. Rennell, J. & Dury, A. (1776) An Actual Survey of the Provinces of Bengal, Bahar. Map, Laurie & Whittle, London.
    [Google Scholar]
  52. Sarkkula, J., Kiirikki, M., Koponen, J. & Kummu, M. (2003) Ecosystem processes of the Tonle Sap Lake. Ecotone II‐1 workshop, Phnom Penh/Siem Reap, Cambodia.
  53. Sikder, A.M. & Alam, M.M. (2003) 2‐D modelling of the anticlinal structures and structural development of the eastern fold belt of the Bengal Basin, Bangladesh. Sed. Geol., 155, 209–226.
    [Google Scholar]
  54. Steckler, M.S., Akhter, S.H. & Seeber, L. (2008) Collision of the Ganges‐Brahmaputra Delta with the Burma Arc: implications for earthquake hazard. Earth Planet. Sci. Lett., 273(3–4), 367–378.
    [Google Scholar]
  55. Steckler, M.S., Mondal, D.R., Akhter, S.H., Seeber, L., Feng, L., Gale, J., Hill, E.M. & Howe, M. (2016) Locked and loading megathrust linked to active subduction beneath the Indo‐Burman Ranges. Nat. Geosci., 9, 615–619.
    [Google Scholar]
  56. Stouthamer, E. & Berendsen, H.J.A. (2007) Avulsion: the relative roles of autogenic and allogenic processes. Sed. Geol., 198(3–4), 309–325.
    [Google Scholar]
  57. Straub, K.M., Paola, C., Kim, W. & Sheets, B. (2013) Experimental investigation of sediment‐dominated vs. tectonics‐dominated sediment transport systems in subsiding basins. J. Sediment. Res., 83, 1162–1180.
    [Google Scholar]
  58. Stuvier, M. & Reimer, P.J. (1993) Extended 14C data base and revised calib 3.014C age calibration program. Radiocarbon, 35(1), 215–230.
    [Google Scholar]
  59. Tsukawaki, S. (1997). Lithological features of cored sediments from the northern part of Lake Tonle Sap, Cambodia. The International Conference of Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific. 232–239.
  60. Uddin, A. & Lundberg, N. (2004) Miocene sedimentation and subsidence during continent‐continent collision, Bengal basin, Bangladesh. Sediment. Geol., 164(1–2), 131–146.
    [Google Scholar]
  61. Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A. & Li, X. (2005) The Holocene Asian Monsoon: links to solar changes and North Atlantic climate. Science, 308, 854–857.
    [Google Scholar]
  62. Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P. & Jetel, M. (2011) Structure and origin of Holocene cold events. Quatern. Sci. Rev., 30, 3109–3123.
    [Google Scholar]
  63. Whittaker, A.C., Duller, R.A., Springett, J., Smithells, R.A., Whitchurch, A.L. & Allen, P.A. (2011) Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply. Geol. Soc. Am. Bull., 123, 1363–1382.
    [Google Scholar]
  64. Williams, L. (2014). Late Quaternary stratigraphy and infilling of the Meghna River valley along the tectonically active eastern margin of the Ganges‐Brahmaputra‐Meghna delta. Unpublished Masters thesis, Vanderbilt University, Nashville, TN.
  65. Yin, A., Dubey, C.S., Webb, A.A.G., Kelty, T.K., Grove, M., Gehrels, G.E. & Burgess, W.P. (2010) Geologic correlation of the Himalayan orogeny and Indian craton: part 1. Structural geology, U‐Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India. Geol. Soc. Am. Bull., 122(3–4), 336–359.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12254
Loading
/content/journals/10.1111/bre.12254
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error