1887
Volume 30, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Continental breakup between Greenland and North America produced the small oceanic basins of the Labrador Sea and Baffin Bay, which are connected via the Davis Strait, a region mostly comprised of continental crust. This study contributes to the debate regarding the role of pre‐existing structures on rift development in this region using seismic reflection data from the Davis Strait data to produce a series of seismic surfaces, isochrons and a new offshore fault map from which three normal fault sets were identified as (i) NE‐SW, (ii) NNW‐SSE and (iii) NW‐SE. These results were then integrated with plate reconstructions and onshore structural data allowing us to build a two‐stage conceptual model for the offshore fault evolution in which basin formation was primarily controlled by rejuvenation of various types of pre‐existing structures. During the first phase of rifting between at least Chron 27 (ca. 62 Ma; Palaeocene), but potentially earlier, and Chron 24 (ca. 54 Ma; Eocene) faulting was primarily controlled by pre‐existing structures with oblique normal reactivation of both the NE‐SW and NW‐SE structural sets in addition to possible normal reactivation of the NNW‐SSE structural set. In the second rifting stage between Chron 24 (ca. 54 Ma; Eocene) and Chron 13 (ca. 35 Ma; Oligocene), the sinistral Ungava transform fault system developed due to the lateral offset between the Labrador Sea and Baffin Bay. This lateral offset was established in the first rift stage possibly due to the presence of the Nagssugtoqidian and Torngat terranes being less susceptible to rift propagation. Without the influence of pre‐existing structures the manifestation of deformation cannot be easily explained during either of the rifting phases. Although basement control diminished into the post‐rift, the syn‐rift basins from both rift stages continued to influence the location of sedimentation possibly due to differential compaction effects. Variable lithospheric strength through the rifting cycle may provide an explanation for the observed diminishing role of basement structures through time.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12257
2017-08-19
2024-03-28
Loading full text...

Full text loading...

References

  1. Abdelmalak, M.M., Geoffroy, L., Angelier, J., Bonin, B., Callot, J.P., Gélard, J.P. & Aubourg, C. (2012) Stress fields acting during lithosphere breakup above a melting mantle: a case example in West Greenland. Tectonophysics, 581, 132–143.
    [Google Scholar]
  2. Angelier, J. (1990) Inversion of field data in fault tectonics to obtain the regional stress‐III. A new rapid direct inversion method by analytical means. Geophys. J. Int., 103(2), 363–376.
    [Google Scholar]
  3. Autin, J., Bellahsen, N., Leroy, S., Husson, L., Beslier, M.O. & D'Acremont, E. (2013) The role of structural inheritance in oblique rifting: insights from analogue models and application to the Gulf of Aden. Tectonophysics, 607, 51–64.
    [Google Scholar]
  4. Bellahsen, N., Fournier, M., d'Acremont, E., Leroy, S. & Daniel, J.M. (2006) Fault reactivation and rift localization: Northeastern Gulf of Aden margin. Tectonics, 25(1), 1–14.
    [Google Scholar]
  5. Bureau, D., Mourgues, R., Cartwright, J., Foschi, M. & Abdelmalak, M.M. (2013) Characterisation of interactions between a pre‐existing polygonal fault system and sandstone intrusions and the determination of paleo‐stresses in the Faroe‐Shetland basin. J. Struct. Geol., 46, 186–199.
    [Google Scholar]
  6. Butler, R.W.H., Holdsworth, R.E. & Lloyd, G.E. (1997) The role of basement reactivation in continental deformation. J. Geol. Soc., 154(1), 69–71.
    [Google Scholar]
  7. Chalmers, J.A. (1991) New evidence on the structure of the Labrador Sea/Greenland continental margin. J. Geol. Soc., 148(5), 899–908.
    [Google Scholar]
  8. Chalmers, J.A. (1997) The continental margin off southern Greenland: along‐strike transition from an amagmatic to a volcanic margin. J. Geol. Soc., 154(3), 571–576.
    [Google Scholar]
  9. Chalmers, J.A. & Laursen, K.H. (1995) Labrador Sea: the extent of continental and oceanic crust and the timing of the onset of seafloor spreading. Mar. Pet. Geol., 12(2), 205–217.
    [Google Scholar]
  10. Chalmers, J.A. & Pulvertaft, T.C.R. (2001) Development of the continental margins of the Labrador Sea: a review. Geol. Soc. London Spec. Publ., 187(1), 77–105.
    [Google Scholar]
  11. Chattopadhyay, A. & Chakra, M. (2013) Influence of pre‐existing pervasive fabrics on fault patterns during orthogonal and oblique rifting: an experimental approach. Mar. Pet. Geol., 39(1), 74–91.
    [Google Scholar]
  12. Chenin, P., Manatschal, G., Lavier, L.L. & Erratt, D. (2015) Assessing the impact of orogenic inheritance on the architecture, timing and magmatic budget of the North Atlantic rift system: a mapping approach. J. Geol. Soc., 172, 711–720.
    [Google Scholar]
  13. Chian, D., Keen, C., Reid, I. & Louden, K.E. (1995) Evolution of nonvolcanic rifted margins: new results from the conjugate margins of the Labrador Sea. Geology, 23(7), 589–592.
    [Google Scholar]
  14. Corti, G., van Wijk, J., Cloetingh, S. & Morley, C.K. (2007) Tectonic inheritance and continental rift architecture: numerical and analogue models of the East African Rift system. Tectonics, 26(6), 1–13.
    [Google Scholar]
  15. Dalhoff, F., Chalmers, J.A., Gregersen, U., Nøhr‐Hansen, H., Rasmussen, J.A. & Sheldon, E. (2003) Mapping and facies analysis of Paleocene‐Mid‐Eocene seismic sequences, offshore southern West Greenland. Mar. Pet. Geol., 20(9), 935–986.
    [Google Scholar]
  16. Dalhoff, F., Larsen, L.M., Ineson, J.R., Stouge, S., Bojesen‐Koefoed, J.A., Lassen, S., Kuijpers, A., Rasmussen, J.A. & Nøhr‐Hansen, H. (2006) Continental crust in the Davis Strait: new evidence from seabed sampling. Geol. Survey Denmark Greenland Bulletin, 10, 33–36.
    [Google Scholar]
  17. De Paola, N., Holdsworth, R.E. & McCaffrey, K.J.W. (2005) The influence of lithology and pre‐existing structures on reservoir‐scale faulting patterns in transtensional rift zones. J. Geol. Soc., 162, 471–480.
    [Google Scholar]
  18. Dore, A.G., Lundin, E.R., Fichler, C. & Olesen, O. (1997) Patterns of basement structure and reactivation along the NE Atlantic margin. J. Geol. Soc., 154(1), 85–92.
    [Google Scholar]
  19. Døssing, A. (2011) Fylla Bank: structure and evolution of a normal‐to‐shear rifted margin in the northern Labrador Sea. Geophys. J. Int., 187(2), 655–676.
    [Google Scholar]
  20. Fjeldskaar, W., Helset, H.M., Johansen, H., Grunnaleite, I. & Horstad, I. (2008) Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: implications for vitrinite reflectance and hydrocarbon maturation. Basin Res., 20, 143–159.
    [Google Scholar]
  21. Funck, T., Jackson, H.R., Louden, K.E. & Klingelhofer, F. (2007) Seismic study of the transform‐rifted margin in Davis Strait between Baffin Island (Canada) and Greenland: what happens when a plume meets a transform. J. Geophys. Res.: Solid Earth, 112(4), B04402.
    [Google Scholar]
  22. Funck, T., Gohl, K., Damm, V. & Heyde, I. (2012) Tectonic evolution of southern Baffin Bay and Davis Strait: results from a seismic refraction transect between Canada and Greenland. J. Geophys. Res.: Solid Earth, 117(4), B04107.
    [Google Scholar]
  23. Gibson, G.M., Totterdell, J.M., White, L.T., Mitchell, C.H., Stacey, A.R., Morse, M.P. & Whitaker, A. (2013) Pre‐existing basement structure and its influence on continental rifting and fracture zone development along Australia's southern rifted margin. J. Geol. Soc., 170(2), 365–377.
    [Google Scholar]
  24. Gregersen, U. & Skaarup, N. (2007) A mid‐Cretaceous prograding sedimentary complex in the Sisimiut Basin, offshore West Greenland‐stratigraphy and hydrocarbon potential. Mar. Pet. Geol., 24(1), 15–28.
    [Google Scholar]
  25. Grocott, J. & McCaffrey, K. (2017) Basin evolution and destruction in an early Proterozoic continental margin: the Rinkian fold‐thrust Belt of Central West Greenland. J. Geol. Soc., https://doi.org/10.1144/jgs2016-109.
    [Google Scholar]
  26. Holdsworth, R.E., Butler, C.A. & Roberts, A.M. (1997) The recognition of reactivation during continental deformation. J. Geol. Soc., 154(1), 73–78.
    [Google Scholar]
  27. Holdsworth, R.E., Handa, M., Miller, J.A. & Buick, I.S. (2001) Continental reactivation and reworking: an introduction. Geol. Soc. London Spec. Publ., 184(1), 1–12.
    [Google Scholar]
  28. Houseman, G. & Molnar, P. (2001) Mechanisms of lithospheric rejuvenation associated with continental orogeny. Geol. Soc. London Spec. Publ., 184, 13–38.
    [Google Scholar]
  29. Huerta, A. & Harry, D.L. (2012) Wilson cycles, tectonic inheritance, and rifting of the North American Gulf of Mexico continental margin. Geosphere, 8(2), 374.
    [Google Scholar]
  30. Japsen, P., Bonow, J.M., Peulvast, J.‐P. & Wilson, R.W. (2006) Uplift, erosion and fault reactivation in southern West Greenland. GEUS Field Reports, 63.
  31. Keen, C.E., Dickie, K. & Dehler, S.A. (2012) The volcanic margins of the northern Labrador Sea: insights to the rifting process. Tectonics, 31(1), 1–13.
    [Google Scholar]
  32. Kerr, J.W. (1967) A submerged continental remnant beneath the Labrador Sea. Earth Planet. Sci. Lett., 2(4), 283–289.
    [Google Scholar]
  33. Kerr, A., Hall, J., Wardle, R.J., Gower, C.F. & Ryan, B. (1997) New reflections on the structure and evolution of the Makkovikian – Ketilidian Orogen in Labrador and southern Greenland. Tectonics, 16(6), 942–965.
    [Google Scholar]
  34. Koopmann, H., Brune, S., Franke, D. & Breuer, S. (2014) Linking rift propagation barriers to excess magmatism at volcanic rifted margins. Geology, 42(12), 1071–1074.
    [Google Scholar]
  35. Korme, T., Acocella, V. & Abebe, B. (2004) The role of pre‐existing structures in the origin, propagation and architecture of faults in the main Ethiopian rift. Gondwana Res., 7(2), 467–479.
    [Google Scholar]
  36. Korstgård, J., Ryan, B. & Wardle, R. (1987) The boundary between Proterozoic and Archaean crustal blocks in central West Greenland and northern Labrador. Geol. Soc. London Spec. Publ., 27(1), 247–259.
    [Google Scholar]
  37. Krabbendam, M. (2001) When the Wilson Cycle breaks down: how orogens can produce strong lithosphere and inhibit their future reworking. Geol. Soc. London Spec. Publ., 184(1), 57–75.
    [Google Scholar]
  38. Kusznir, N.J. & Park, R.G. (1987) The extensional strength of the continental lithosphere: its dependence on geothermal gradient, and crustal composition and thickness. Geol. Soc. London Spec. Publ., 28(1), 35–52.
    [Google Scholar]
  39. Larsen, H.C. & Saunders, A.D. (1998) Tectonism and volcanism at the southeast Greenland rifted margin: a record of plume impact and later continental rupture. Proceedings of the Ocean Drilling Program, Scientific Results, 152, https://doi.org/10.2973/odp.proc.sr.152.1998.
  40. Larsen, L.M., Rex, D.C., Watt, W.S. & Guise, P.G. (1999) 40Ar–39Ar dating of alkali basaltic dykes along the south‐west coast of Greenland: cretaceous and Tertiary igneous activity along the eastern margin of the Labrador Sea. Geol. Greenland Survey Bulletin, 184, 19–29.
    [Google Scholar]
  41. Larsen, L.M., Heaman, L.M., Creaser, R.A., Duncan, R.A., Frei, R. & Hutchison, M. (2009) Tectonomagmatic events during stretching and basin formation in the Labrador Sea and the Davis Strait: evidence from age and composition of Mesozoic to Palaeogene dyke swarms in West Greenland. J. Geol. Soc., 166(6), 999–1012.
    [Google Scholar]
  42. Lister, G.S., Etheridge, M.A. & Symonds, P.A. (1991) Detachment models for the formation of passive continental margins. Tectonics, 10(5), 1038–1064.
    [Google Scholar]
  43. Magee, C., Muirhead, J.D., Karvelas, A., Holford, S.P., Jackson, C.A.L., Bastow, I.D., Schofield, N., Stevenson, C.T.E., McLean, C., McCarthy, W. & Shtukert, O. (2016) Lateral magma flow in mafic sill complexes. Geosphere, 12(3), GES01256.
    [Google Scholar]
  44. Magee, C., Jackson, C.A.‐L., Hardman, J.P. & Reeve, M.T. (2017) Decoding sill emplacement and forced fold growth in the Exmouth Sub‐basin, offshore northwest Australia: Implications for hydrocarbon exploration. Interpretation, 5(3), SK11–SK22.
    [Google Scholar]
  45. Manatschal, G., Lavier, L. & Chenin, P. (2015) The role of inheritance in structuring hyperextended rift systems: some considerations based on observations and numerical modeling. Gondwana Res., 27(1), 140–164.
    [Google Scholar]
  46. Manhica, A.D.S.T., Grantham, G.H., Armstrong, R.A., Guise, P.G. & Kruger, F.J. (2001) Polyphase deformation and metamorphism at the Kalahari Craton — Mozambique Belt boundary. Geol. Soc. London Spec. Publ., 184(1), 303–322.
    [Google Scholar]
  47. McGregor, E.D., Nielsen, S.B., Stephenson, R.A., Clausen, O.R., Petersen, K.D. & Macdonald, D.I.M. (2012) Evolution of the west Greenland margin: offshore thermostratigraphic data and modelling. J. Geol. Soc., 169(5), 515–530.
    [Google Scholar]
  48. McKenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40(1), 25–32.
    [Google Scholar]
  49. Morley, C.K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A. & Wonganan, N. (2004) Activation of rift oblique and rift parallel pre‐existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand. J. Struct. Geol., 26(10), 1803–1829.
    [Google Scholar]
  50. Nøhr‐Hansen, H. (2003) Dinoflagellate cyst stratigraphy of the Palaeogene strata from the Hellefisk‐1, Ikermiut‐1, Kangâmiut‐1, Nukik‐1, Nukik‐2 and Qulleq‐1 wells, offshore West Greenland. Mar. Pet. Geol., 20(9), 987–1016.
    [Google Scholar]
  51. Nutman, A.P. & Collerson, K.D. (1991) Very early Archean crustal‐accretion complexes preserved in the North Atlantic craton. Geology, 19(8), 791–794.
    [Google Scholar]
  52. Oakey, G.N. & Chalmers, J. A. (2012) A new model for the Paleogene motion of Greenland relative to North America : plate reconstructions of the Davis Strait and Nares Strait regions between Canada and Greenland. J. Geophys. Res.: Solid Earth, 117 (B10), 1–28.
    [Google Scholar]
  53. Peace, A., McCaffrey, K.J.W., Imber, J., Phethean, J., Nowell, G., Gerdes, K. & Dempsey, E. (2016) An evaluation of Mesozoic rift‐related magmatism on the margins of the Labrador Sea: implications for rifting and passive margin asymmetry. Geosphere, 12(6), 1701–1724.
    [Google Scholar]
  54. Peace, A., McCaffrey, K., Imber, J., Hobbs, R., van Hunen, J. & Gerdes, K. (2017) Quantifying the influence of sill intrusion on the thermal evolution of organic‐rich sedimentary rocks in nonvolcanic passive margins: an example from ODP 210‐1276, offshore Newfoundland, Canada. Basin Res., 29(3), 249–265.
    [Google Scholar]
  55. Petersen, K.D. & Schiffer, C. (2016) Wilson cycle passive margins: control of orogenic inheritance on continental breakup. Gondwana Res., https://doi.org/10.1016/j.gr.2016.06.012.
    [Google Scholar]
  56. Phillips, T.B., Jackson, C.A.‐L., Bell, R.E., Duffy, O.B. & Fossen, H. (2016) Reactivation of intrabasement structures during rifting: a case study from offshore southern Norway. J. Struct. Geol., 91, 54–73.
    [Google Scholar]
  57. Piasecki, S. (2003) Neogene dinoflagellate cysts from Davis Strait, offshore West Greenland. Mar. Pet. Geol., 20(9), 1075–1088.
    [Google Scholar]
  58. Polat, A., Wang, L. & Appel, P.W.U. (2014) A review of structural patterns and melting processes in the Archean craton of West Greenland: evidence for crustal growth at convergent plate margins as opposed to non‐uniformitarian models. Tectonophysics, 662, 67–94.
    [Google Scholar]
  59. Rasmussen, J.A., Nøhr‐Hansen, H. & Sheldon, E. (2003) Palaeoecology and palaeoenvironments of the lower palaeogene succession, offshore West Greenland. Mar. Pet. Geol., 20(9), 1043–1073.
    [Google Scholar]
  60. Rolle, F. (1985) Late Cretaceous – Tertiary sediments offshore central West Greenland: Lithostratigraphy, sedimentary evoluation, and petroleum potential. Can. J. Earth Sci., 22(7), 1001–1029.
    [Google Scholar]
  61. Ryan, P.D. & Dewey, J.F. (1997) Continental eclogites and the Wilson Cycle. J. Geol. Soc., 154(3), 437–442.
    [Google Scholar]
  62. Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E. & Francis, R. (2014) New global marine gravity model from CryoSat‐2 and Jason‐1 reveals buried tectonic structure. Science, 346(6205), 65–67.
    [Google Scholar]
  63. Schenk, C.J. (2011) Chapter 41 geology and petroleum potential of the West Greenland‐East Canada Province. Arctic Petrol. Geol., 35 (1), 627–645.
    [Google Scholar]
  64. Schiffer, C., Peace, A., Phethean, J., Gernigon, L., McCaffrey, K.J.W., Petersen, K.D. & Foulger, G.R., (2018), The Jan Mayen Microplate complex and the Wilson Cycle: in tectonic evolution: 50 Years of the Wilson Cycle concept. Geol. Soc. London Spec. Publ.https://doi.org/10.1144/SP470.2
    [Google Scholar]
  65. Skogseid, J. (2001) Volcanic margins: geodynamic and exploration aspects. Mar. Pet. Geol., 18(4), 457–461.
    [Google Scholar]
  66. Sørensen, A.B. (2006) Stratigraphy, structure and petroleum potential of the Lady Franklin and Maniitsoq Basins, offshore southern West Greenland. Petrol. Geosci., 12(3), 221–234.
    [Google Scholar]
  67. Srivastava, S.P. (1978) Evolution of the Labrador Sea and its bearing on the early evolution of the North Atlantic. Geophys. J. Int., 52(2), 313–357.
    [Google Scholar]
  68. St‐Onge, M.R., Van Gool, J.A.M., Garde, A.A. & Scott, D.J. (2009) Correlation of Archaean and Palaeoproterozoic units between northeastern Canada and western Greenland: constraining the pre‐collisional upper plate accretionary history of the Trans‐Hudson orogen. Geol. Soc. London Spec. Publ., 318(1), 193–235.
    [Google Scholar]
  69. Storey, M., Duncan, R.A., Pedersen, A.K., Larsen, L.M. & Larsen, H.C. (1998) 40Ar/39Ar geochronology of the West Greenland Tertiary volcanic province. Earth Planet. Sci. Lett., 160(3–4), 569–586.
    [Google Scholar]
  70. Suckro, S.K., Gohl, K., Funck, T., Heyde, I., Ehrhardt, A., Schreckenberger, B., Gerlings, J., Damm, V. & Jokat, W. (2012) The crustal structure of southern Baffin Bay: implications from a seismic refraction experiment. Geophys. J. Int., 190(1), 37–58.
    [Google Scholar]
  71. Suckro, S.K., Gohl, K., Funck, T., Heyde, I., Schreckenberger, B., Gerlings, J. & Damm, V. (2013) The Davis Strait crust‐a transform margin between two oceanic basins. Geophys. J. Int., 193(1), 78–97.
    [Google Scholar]
  72. Tappe, S., Foley, S.F., Stracke, A., Romer, R.L., Kjarsgaard, B.A., Heaman, L.M. & Joyce, N. (2007) Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr‐Nd‐Hf‐Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet. Sci. Lett., 256(3–4), 433–454.
    [Google Scholar]
  73. Theunissen, K., Klerkx, J., Melnikov, A. & Mruma, A.H. (1996) Mechanisms of inheritance of rift faulting in the western branch of the East African Rift, Tanzania. Tectonics, 15(4), 776–790.
    [Google Scholar]
  74. Thomas, W.A., Ravelo, A.C., Dekens, P.S. & McCarthy, M.D. (2006) Tectonic inheritance at a continental margin. GSA Today, 16(3), 4–11.
    [Google Scholar]
  75. Umpleby, D.C. (1979) Geology of the Labrador shelf. Geol. Survey Canada, 79–13.
    [Google Scholar]
  76. Van Gool, J.A.M., Connelly, J.N., Marker, M. & Mengel, F.C. (2002) The Nagssugtoqidian Orogen of West Greenland: tectonic evolution and regional correlations from a West Greenland perspective. Can. J. Earth Sci., 39(5), 665–686.
    [Google Scholar]
  77. Wilson, T. (1966) Did the Atlantic close and the re‐open?Nature, 209, 1246–1248.
    [Google Scholar]
  78. Wilson, R.W., Klint, K.E.S., Van Gool, J.A.M., McCaffrey, K.J.W., Holdsworth, R.E. & Chalmers, J.A. (2006) Faults and fractures in central West Greenland: onshore expression of continental break‐up and sea‐floor spreading in the Labrador–Baffin Bay Sea. Geol. Survey Denmark Greenland Bulletin, 11, 185–204.
    [Google Scholar]
  79. Wu, L., Trudgill, B.D. & Kluth, C.F. (2016) Salt diapir reactivation and normal faulting in an oblique extensional system, Vulcan Sub‐basin, NW Australia. J. Geol. Soc., 173, https://doi.org/10.1144/jgs2016-008.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12257
Loading
/content/journals/10.1111/bre.12257
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error