1887
Volume 30, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The onshore central Corinth rift contains a syn‐rift succession >3 km thick deposited in 5–15 km‐wide tilt blocks, all now inactive, uplifted and deeply incised. This part of the rift records upward deepening from fluviatile to lake‐margin conditions and finally to sub‐lacustrine turbidite channel and lobe complexes, and deep‐water lacustrine conditions (Lake Corinth) were established over most of the rift by 3.6 Ma. This succession represents the first of two phases of rift development – Rift 1 from 5.0–3.6 to 2.2–1.8 Ma and Rift 2 from 2.2–1.8 Ma to present. Rift 1 developed as a 30 km‐wide zone of distributed normal faulting. The lake was fed by four major N‐ to NE‐flowing antecedent drainages along the southern rift flank. These sourced an axial fluvial system, Gilbert fan deltas and deep lacustrine turbidite channel and lobe complexes. The onset of Rift 2 and abandonment of Rift 1 involved a 30 km northward shift in the locus of rifting. In the west, giant Gilbert deltas built into a deepening lake depocentre in the hanging wall of the newly developing southern border fault system. Footwall and regional uplift progressively destroyed Lake Corinth in the central and eastern parts of the rift, producing a staircase of deltaic and, following drainage reversal, shallow marine terraces descending from >1000 m to present‐day sea level. The growth, linkage and death of normal faults during the two phases of rifting are interpreted to reflect self‐organization and strain localization along co‐linear border faults. In the west, interaction with the Patras rift occurred along the major Patras dextral strike‐slip fault. This led to enhanced migration of fault activity, uplift and incision of some early Rift 2 fan deltas, and opening of the Rion Straits at . 400–600 ka. The landscape and stratigraphic evolution of the rift was strongly influenced by regional palaeotopographic variations and local antecedent drainage, both inherited from the Hellenide fold and thrust belt.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12260
2017-09-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/30/3/bre12260.html?itemId=/content/journals/10.1111/bre.12260&mimeType=html&fmt=ahah

References

  1. Alonso‐Zara, A.M. & Wright, V.P. (2010) Palustrine carbonates. In: Carbonates in Continental Settings: Facies. Environments and Processes (Ed. by A.M.Alonso‐Zara , L.H.Tanner ), pp. 103–131. Elsevier, Amsterdam.
    [Google Scholar]
  2. Armijo, R., Meyer, B., King, G.C.P., Rigo, A. & Papanastassiou, D. (1996) Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys. J. Int., 126, 11–53.
    [Google Scholar]
  3. Armitage, J.J., Duller, R.A., Whittaker, A.C. & Allen, P.A. (2011) Transformation of tectonic and climatic signals from source to sedimentary archive. Nat. Geosci., 4, 231–235.
    [Google Scholar]
  4. Avallone, A., Briole, P., Agatza‐Balodimou, A.M., Billiris, H., Charade, O., Mitsakaki, C., Nercessian, A., Papazissi, K., Paradissis, D. & Veis, G. (2004) Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. C.R. Geosci., 336, 301–311.
    [Google Scholar]
  5. Backert, N., Ford, M. & Malartre, F. (2010) Architecture and sedimentology of the Kerinitis Gilbert‐type fan delta, Corinth Rift, Greece. Sedimentology, 57, 543–586.
    [Google Scholar]
  6. Beckers, A., Hubert‐Ferrari, A., Beck, C., Bodeux, S., Tripsanas, E., Sakellariou, D. & De Batist, M. (2015) Active faulting at the western tip of the Gulf of Corinth, Greece, from high‐resolution seismic data. Mar. Geol., 360, 55–69.
    [Google Scholar]
  7. Bell, R.E., McNeill, L.C., Bull, J.M. & Henstock, T.J. (2008) Evolution of the offshore western Gulf of Corinth. Geol. Soc. Am. Bull., 120, 156–178.
    [Google Scholar]
  8. Bell, R.E., McNeill, L.C., Bull, J.M., Henstock, T.J., Collier, R.E.L. & Leeder, M.R. (2009) Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Res., 21, 824–855.
    [Google Scholar]
  9. Bell, R.E., McNeill, L.C., Henstock, T.J. & Bull, J.M. (2011) Comparing extension on multiple time and depth scales in the Corinth Rift, Central Greece. Geophys. J. Int., 186, 463–470.
    [Google Scholar]
  10. Bentham, P., Collier, R.E., Gawthorpe, R.L., Leeder, R. & Stark, C. (1991) Tectono‐sedimentary development of an extensional basin: the Neogene Megara Basin, Greece. J. Geol. Soc., 148, 923–934.
    [Google Scholar]
  11. Bernard, P., Lyon‐Caen, H., Briole, P., Deschamps, A., Boudin, F., Makropoulos, K., Papadimitriou, P., Lemeille, F., Patau, G., Billiris, H., Paradissis, D., Papazissi, P., Castarede, H., Charade, O., Nercessian, A., Avallone, D., Pachiani, F., Zahradnik, J., Sacks, S. & Linde, A. (2006) Seismicity, deformation and seismic hazard in the western rift of Corinth: New insights from the Corinth Rift Laboratory (CRL). Tectonophysics, 426, 7–30.
    [Google Scholar]
  12. Bouma, A.H. (1962) Sedimentology of Some Flysch Deposits; a Graphic Approach to Facies Interpretation, p. 167. Elsevier, Amsterdam.
    [Google Scholar]
  13. Brasier, A.T., Andrews, J.E., Marca‐Bell, A.D. & Dennis, P.F. (2010) Depositional continuity of seasonally laminated tufas: implications for delta O‐18 based palaeotemperatures. Global Planet. Change, 71, 160–167.
    [Google Scholar]
  14. Brasier, A.T., Andrews, J.E. & Kendall, A.C. (2011) Diagenesis or dire genesis? The origin of columnar spar in tufa stromatolites of central Greece and the role of chironomid larvae. Sedimentology, 58, 1283–1302.
    [Google Scholar]
  15. Bridge, J.S. (1993) Description and interpretation of fluvial deposits – a critical perspective. Sedimentology, 40, 801–810.
    [Google Scholar]
  16. Bridge, J.S. (2003) Rivers and Floodplains: Forms, Processes, and the Sedimentary Record. Blackwell Science Ltd, Oxford.
    [Google Scholar]
  17. Briole, P., Rigo, A., Lyon‐Caen, H., Ruegg, J.C., Papazissi, K., Mitsakaki, C., Balodimou, A., Veis, G., Hatzfeld, D. & Deschamps, A. (2000) Active deformation of the Corinth rift, Greece: results from repeated Global Positioning System surveys between 1990 and 1995. J. Geophys. Res.‐Solid Earth, 105, 25605–25625.
    [Google Scholar]
  18. Causse, C., Moretti, I., Eschard, R., Micarelli, L., Ghaleb, B. & Frank, N. (2004) Kinematics of the Corinth Gulf inferred from calcite dating and syntectonic sedimentary characteristics. C.R. Geosci., 336, 281–290.
    [Google Scholar]
  19. Charalampakis, M., Lykousis, V., Sakellariou, D., Papatheodorou, G. & Ferentinos, G. (2014) The tectono‐sedimentary evolution of the Lechaion Gulf, the south eastern branch of the Corinth graben, Greece. Mar. Geol., 351, 58–75.
    [Google Scholar]
  20. Clarke, P.J., Davies, R.R., England, P.C., Parsons, B.E., Billiris, H., Paradissis, D., Veis, G., Denys, P.H., Cross, P.A., Ashkenazi, V. & Bingley, R. (1997) Geodetic estimate of seismic hazard in the Gulf of Korinthos. Geophys. Res. Lett., 24, 1303–1306.
    [Google Scholar]
  21. Clarke, P.J., Davies, R.R., England, P.C., Parsons, B., Billiris, H., Paradissis, D., Veis, G., Cross, P.A., Denys, P., Ashkenazi, V., Bingley, R., Kahle, H.‐G., Muller, M.V. & Briole, P. (1998) Crustal strain in central Greece from repeated GPS measurements in the interval 1989‐1997. Geophys. J. Int., 135, 195–214.
    [Google Scholar]
  22. Collier, R.E.L. (1990) Eustatic and tectonic controls upon quaternary coastal sedimentation in the Corinth Basin, Greece. J. Geol. Soc., 147, 301–314.
    [Google Scholar]
  23. Collier, R.E.L. & Dart, C.J. (1991) Neogene to quaternary rifting, sedimentation and uplift in the Corinth Basin, Greece. J. Geol. Soc., 148, 1049–1065.
    [Google Scholar]
  24. Collier, R.E.L.L. & Thompson, J. (1991) Transverse and Linear Dunes in an Upper Pleistocene Marine Sequence, Corinth Basin, Greece. Sedimentology, 38, 1021–1040.
    [Google Scholar]
  25. Collier, R.E.L., Leeder, M.R., Trout, M., Ferentinos, G., Lyberis, E. & Papatheodorou, G. (2000) High sediment yields and cool, wet winters: test of last glacial paleoclimates in the northern Mediterranean. Geology, 28, 999–1002.
    [Google Scholar]
  26. Cowie, P.A. (1998) A healing‐reloading feedback control on the growth rate of seismogenic faults. J. Struct. Geol., 20, 1075–1087.
    [Google Scholar]
  27. Cowie, P.A., Gupta, S. & Dawers, N.H. (2000) Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Res., 12, 241–261.
    [Google Scholar]
  28. Cowie, P.A., Underhill, J.R., Behn, M.D., Lin, J. & Gill, C.E. (2005) Spatio‐temporal evolution of strain accumulation derived from multi‐scale observations of Late Jurassic rifting in the northern North Sea: a critical test of models for lithospheric extension. Earth Planet. Sci. Lett., 234, 401–419.
    [Google Scholar]
  29. Cowie, P.A., Attal, M., Tucker, G.E., Whittaker, A.C., Naylor, M., Ganas, A. & Roberts, G.P. (2006) Investigating the surface process response to fault interaction and linkage using a numerical modelling approach. Basin Res., 18, 231–266.
    [Google Scholar]
  30. Crossley, R. (1984) Controls of sedimentation in the Malawi Rift Valley, Central Africa. Sed. Geol., 40, 33–50.
    [Google Scholar]
  31. Dart, C.J., Collier, R.E.L., Gawthorpe, R.L., Keller, J.V.A. & Nichols, G. (1994) Sequence stratigraphy of ()Pliocene‐quaternary synrift, gilbert‐type fan deltas, Northern Peloponnesos, Greece. Mar. Pet. Geol., 11, 545–560.
    [Google Scholar]
  32. Davies, R., England, P., Parsons, B., Billiris, H., Paradissis, D. & Veis, G. (1997) Geodetic strain of Greece in the interval 1892–1992. J. Geophys. Res.‐Solid Earth, 102, 24571–24588.
    [Google Scholar]
  33. Doutsos, T. & Piper, D.J.W. (1990) Listric faulting, sedimentation, and morphological evolution of the quaternary Eastern Corinth Rift, Greece – 1st stages of continental rifting. Geol. Soc. Am. Bull., 102, 812–829.
    [Google Scholar]
  34. Duffy, O.B., Brocklehurst, S.H., Gawthorpe, R.L., Leeder, M.R. & Finch, E. (2015) Controls on landscape and drainage evolution in regions of distributed normal faulting: Perachora Peninsula, Corinth Rift, Central Greece. Basin Res., 27, 473–494.
    [Google Scholar]
  35. Ebinger, C.J., Jackson, J.A., Foster, A.N. & Hayward, N.J. (1999) Extensional basin geometry and the elastic lithosphere. Philos. Transact. Royal Soc. Math. Phys. Eng. Sci., 357, 741–762.
    [Google Scholar]
  36. Flotte, N., Plagnes, V., Sorel, D. & Benedicto, A. (2001) Attempt to date Pleistocene normal faults of the Corinth‐Patras Rift (Greece) by U/Th method, and tectonic implications. Geophys. Res. Lett., 28, 3769–3772.
    [Google Scholar]
  37. Floyd, M.A., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., McClusky, S., Nocquet, J.M., Palamartchouk, K., Parsons, B. & England, P.C. (2010) A new velocity field for Greece: implications for the kinematics and dynamics of the Aegean. J. Geophys. Res.‐Solid Earth, 115, https://doi.org/10.1029/2009jb007040.
    [Google Scholar]
  38. Ford, M., Rohais, S., Williams, E.A., Bourlange, S., Jousselin, D., Backert, N. & Malartre, F. (2013) Tectono‐sedimentary evolution of the western Corinth rift (Central Greece). Basin Res., 25, 3–25.
    [Google Scholar]
  39. Ford, M., Hemelsdael, R., Mancini, M. & Palyvos, N. (2016) Rift migration and lateral propagation: evolution of normal faults and sediment‐routing systems of the western Corinth rift (Greece). In: The Geometry of Normal Faults (Ed. by ChildsC. , HoldsworthR.E. , JacksonC.A‐L. , ManzocchiT. , WalshJ.J. , YieldingG. ) Geol. Soc. London, Spec. Publ., (439) London.
    [Google Scholar]
  40. Gawthorpe, R.L. & Leeder, M.R. (2000) Tectono‐sedimentary evolution of active extensional basins. Basin Res., 12, 195–218.
    [Google Scholar]
  41. Gawthorpe, R.L., Fraser, A.J. & Collier, R.E.L. (1994) Sequence stratigraphy in active extensional basins – implications for the interpretation of ancient basin‐fills. Mar. Pet. Geol., 11, 642–658.
    [Google Scholar]
  42. Gawthorpe, R.L., Sharp, I., Underhill, J.R. & Gupta, S. (1997) Linked sequence stratigraphic and structural evolution of propagating normal faults. Geology, 25, 795–798.
    [Google Scholar]
  43. Gawthorpe, R.L., Jackson, C.A.L., Young, M.J., Sharp, I.R., Moustafa, A.R. & Leppard, C.W. (2003) Normal fault growth, displacement localisation and the evolution of normal fault populations: the Hammam Faraun fault block, Suez rift, Egypt. J. Struct. Geol., 25, 883–895.
    [Google Scholar]
  44. Gobo, K., Ghinassi, M. & Nemec, W. (2014) Reciprocal changes in foreset to bottomset facies in a gilbert‐type delta: response to short‐term changes in base level. J. Sediment. Res., 84, 1079–1095.
    [Google Scholar]
  45. Gobo, K., Ghinassi, M. & Nemec, W. (2015) Gilbert‐type deltas recording short‐term base‐level changes: delta‐brink morphodynamics and related foreset facies. Sedimentology, 62, 1923–1949.
    [Google Scholar]
  46. Hemelsdaël, R. & Ford, M. (2016) Relay zone evolution: a history of repeated fault propagation and linkage, central Corinth rift, Greece. Basin Res., 28, 34–56.
    [Google Scholar]
  47. Hemelsdaël, R., Ford, M., Malartre, F. & Gawthorpe, R.L. (2017) Interaction of an antecedent fluvial system with early normal fault growth: implications for syn‐rift stratigraphy, western Corinth rift (Greece). Sedimentology, https://doi.org/10.1111/sed.12381.
    [Google Scholar]
  48. Jackson, J.A., Gagnepain, J., Houseman, G., King, G.C.P., Papadimitriou, P., Soufleris, C. & Virieux, J. (1982) Seismicity, normal faulting, and the geomorphological development of the Gulf of Corinth (Greece) – the Corinth earthquakes of February and March 1981. Earth Planet. Sci. Lett., 57, 377–397.
    [Google Scholar]
  49. Keraudren, B. & Sorel, D. (1987) The terraces of Corinth (Greece) – a detailed record of Eustatic sea‐level variations during the last 500,000 years. Mar. Geol., 77, 99–107.
    [Google Scholar]
  50. Koutsouveli, A., Mettos, A., Tsapralis, V., Tsaila‐Monopoli, S. & Ioakim, C. (1989) Geological map of Greece: 1:50,000, Xylokastro Sheet. IGME Publications, Athens, Greece.
    [Google Scholar]
  51. Leeder, M.R. & Gawthorpe, R.L. (1987) Sedimentary models for extensional tilt‐block/half‐graben basins. Geol. Soc. London Spec. Publ., 28, 139–152.
    [Google Scholar]
  52. Leeder, M.R., Seger, M.J. & Stark, C.P. (1991) Sedimentation and tectonic geomorphology adjacent to major active and inactive normal faults, Southern Greece. J. Geol. Soc., 148, 331–343.
    [Google Scholar]
  53. Leeder, M.R., Collier, R.E.L., Aziz, L.H.A., Trout, M., Ferentinos, G., Papatheodorou, G. & Lyberis, E. (2002) Tectono‐sedimentary processes along an active marine/lacustrine half‐graben margin: Alkyonides Gulf, E. Gulf of Corinth, Greece. Basin Res., 14, 25–41.
    [Google Scholar]
  54. Leeder, M.R., Mack, G.H., Brasier, A.T., Parrish, R.R., McIntosh, W.C., Andrews, J.E. & Duermeijer, C.E. (2008) Late‐Pliocene timing of Corinth (Greece) rift‐margin fault migration. Earth Planet. Sci. Lett., 274, 132–141.
    [Google Scholar]
  55. Leeder, M.R., Mark, D.F., Gawthorpe, R.L., Kranis, H., Loveless, S., Pedentchouk, N., Skourtsos, E., Turner, J., Andrews, J.E. & Stamatakis, M. (2012) A “Great Deepening”: chronology of rift climax, Corinth rift, Greece. Geology, 40, 999–1002.
    [Google Scholar]
  56. Løseth, T.M., Ryseth, A.E. & Young, M. (2009) Sedimentology and sequence stratigraphy of the middle Jurassic Tarbert Formation, Oseberg South area (northern North Sea). Basin Res., 21, 597–619.
    [Google Scholar]
  57. Lunt, I.A., Bridge, J.S. & Tye, R.S. (2004) A quantitative, three‐dimensional depositional model of gravelly braided rivers. Sedimentology, 51, 377–414.
    [Google Scholar]
  58. Lykousis, V., Sakellariou, D., Moretti, I. & Kaberi, H. (2007) Late Quaternary basin evolution of the Gulf of Corinth: Sequence stratigraphy, sedimentation, fault‐slip and subsidence rates. Tectonophysics, 440, 29–51.
    [Google Scholar]
  59. Mack, G.H., Seager, W.R., Leeder, M.R., Perez‐Arlucea, M. & Salyards, S.L. (2006) Pliocene and Quaternary history of the Rio Grande, the axial river of the southern Rio Grande rift, New Mexico, USA. Earth Sci. Rev., 79, 141–162.
    [Google Scholar]
  60. Malartre, F., Ford, M. & Williams, E.A. (2004) Preliminary biostratigraphy and 3D geometry of the Vouraikos Gilbert‐type fan delta, Gulf of Corinth, Greece. C.R. Geosci., 336, 269–280.
    [Google Scholar]
  61. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M.N. & Veis, G. (2000) Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res.‐Solid Earth, 105, 5695–5719.
    [Google Scholar]
  62. McMurray, L.S. & Gawthorpe, R.L. (2000) Along‐strike variability of forced regressive deposits: late Quaternary, northern Peloponnesos, Greece. In: Sedimentary Response to Forced Regressions (Ed. by HuntD. , GawthorpeR.L. ) Geol. Soc. of London, Spec. Publ., pp. 363–377.
    [Google Scholar]
  63. McNeill, L.C., Cotterill, C.J., Henstock, T.J., Bull, J.M., Stefatos, A., Collier, R., Papatheoderou, G., Ferentinos, G. & Hicks, S.E. (2005) Active faulting within the offshore western Gulf of Corinth, Greece: implications for models of continental rift deformation. Geology, 33, 241–244.
    [Google Scholar]
  64. Moretti, I., Lykousis, V., Sakellariou, D., Reynaud, J.Y., Benziane, B. & Prinzhoffer, A. (2004) Sedimentation and subsidence rate in the Gulf of Corinth: what we learn from the Marion Dufresne's long‐piston coring. C.R. Geosci., 336, 291–299.
    [Google Scholar]
  65. Morewood, N.C. & Roberts, G.P. (2002) Surface observations of active normal fault propagation: implications for growth. J. Geol. Soc., 159, 263–272.
    [Google Scholar]
  66. Nixon, C.W., McNeill, L.C., Bull, J.M., Bell, R.E., Gawthorpe, R.L., Henstock, T.J., Christodoulou, D., Ford, M., Taylor, B., Sakellariou, D., Ferentinos, G., Papatheodorou, G., Leeder, M.R., Collier, R.E.L., Goodliffe, A.M., Sachpazi, M. & Kranis, H. (2016) Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece. Tectonics, 35, 1225–1248.
    [Google Scholar]
  67. Ori, G.G. (1989) Geologic history of the extensional basin of the Gulf of Corinth (Miocene‐Pleistocene), Greece. Geology, 17, 918–921.
    [Google Scholar]
  68. Palyvos, N., Lemeille, F., Sorel, D., Pantosti, D. & Pavlopoulos, K. (2008) Geomorphic and biological indicators of paleoseismicity and Holocene uplift rate at a coastal normal fault footwall (western Corinth Gulf, Greece). Geomorphology, 96, 16–38.
    [Google Scholar]
  69. Palyvos, N., Mancini, M., Sorel, D., Lemeille, F., Pantosti, D., Julia, R., Triantaphyllou, M. & De Martini, P.M. (2010) Geomorphological, stratigraphic and geochronological evidence of fast Pleistocene coastal uplift in the westernmost part of the Corinth Gulf Rift (Greece). Geol. J., 45, 78–104.
    [Google Scholar]
  70. Papatheodorou, G. & Ferentinos, G. (1993) Sedimentation processes and basin‐filling depositional architecture in an active asymmetric graben: Strava graben, Gulf of Corinth, Greece. Basin Res., 5, 235–253.
    [Google Scholar]
  71. Pedley, H.M. (1990) Classification and environmental models of cool freshwater tufas. Sed. Geol., 68, 143–154.
    [Google Scholar]
  72. Pirazzoli, P.A., Stiros, S.C., Fontugne, M. & Arnold, M. (2004) Holocene and Quaternary uplift in the central part of the southern coast of the Corinth Gulf (Greece). Mar. Geol., 212, 35–44.
    [Google Scholar]
  73. Portman, C., Andrews, J.E., Rowe, P.J., Leeder, M.R. & Hoogewerff, J. (2005) Submarine‐spring controlled calcification and growth of large Rivularia bioherms, Late Pleistocene (MIS 5e), Gulf of Corinth, Greece. Sedimentology, 52, 441–465.
    [Google Scholar]
  74. Prosser, S. (1993) Rift‐Related Linked Depositional Systems and Their Seismic Expression. In: Tectonics and Seismic Sequence Stratigraphy (Ed. WilliamsG.D. & DobbA. ) Geol. Soc., London, Special Publ.,71, 35–66.
    [Google Scholar]
  75. Ravnas, R. & Steel, R.J. (1998) Architecture of marine rift‐basin successions. Bull. Am. Associat. Petrol. Geol., 82, 110–146.
    [Google Scholar]
  76. Roberts, G.P., Houghton, S.L., Underwood, C., Papanikolaou, I., Cowie, P.A., van Calsteren, P., Wigley, T., Cooper, F.J., McArthur, J.M. (2009) Localization of Quaternary slip rates in an active rift in 10(5) years: an example from central Greece constrained by U‐234‐Th‐230 coral dates from uplifted paleoshorelines. J. Geophys. Res. Solid Earth, 114, https://doi.org/10.1029/2008jb005818.
    [Google Scholar]
  77. Rohais, S., Eschard, R., Ford, M., Guillocheau, F. & Moretti, I. (2007a) Stratigraphic architecture of the Plio‐Pleistocene infill of the Corinth Rift: implications for its structural evolution. Tectonophysics, 440, 5–28.
    [Google Scholar]
  78. Rohais, S., Joannin, S., Colin, J.P., Suc, J.P., Guillocheau, F. & Eschard, R. (2007b) Age and environmental evolution of the syn‐rift rill of the southern coast of the gulf of Corinth (Akrata‐Derveni region, Greece). Bull. Soc. Geol. Fr., 178, 231–243.
    [Google Scholar]
  79. Rohais, S., Eschard, R. & Guillocheau, F. (2008) Depositional model and stratigraphic architecture of rift climax Gilbert‐type fan deltas (Gulf of Corinth, Greece). Sed. Geol., 210, 132–145.
    [Google Scholar]
  80. Sakellariou, D., Lykousis, V., Alexandri, S., Kaberi, H., Rousakis, G., Nomikou, P., Georgiou, P. & Ballas, D. (2007) Faulting, seismic‐stratigraphic architecture and Late Quaternary evolution of the Gulf of Alkyonides Basin‐East Gulf of Corinth, Central Greece. Basin Res., 19, 273–295.
    [Google Scholar]
  81. Seger, M. & Alexander, J. (1993) Distribution of Plio‐Pleistocene and Modern coarse‐grained deltas south of the Gulf of Corinth, Greece. In: Tectonic Controls and Signatures in Sedimentary Successions (Ed. by FrostickL.E. & SteelR.J. ) Int. Assoc. Sedimentol. Spec. Publ., 20, 37–48.
    [Google Scholar]
  82. Skourtsos, E. & Kranis, H. (2009) Structure and evolution of the western Corinth Rift, through new field data from the Northern Peloponnesus. In: Extending a Continent: Architecture, Rheology and Heat Budget (Ed. by RingU. & WernickeB. ) Geological Society, London, Special Publications. 321, 119–138.
  83. Skourtsos, E., Kranis, H., Zambetakis‐Lekkas, A., Gawthorpe, R.L. & Leeder, M.R. (2016) Alpine basement outcrops at northern Peloponnesus: implications for the early stages in the evolution of the Corinth Rift. Bull. Geol. Soc. Greece, 50, 153–163.
    [Google Scholar]
  84. Taylor, B., Weiss, J.R., Goodliffe, A.M., Sachpazi, M., Laigle, M. & Hirn, A. (2011) The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece. Geophys. J. Int., 185, 1189–1219.
    [Google Scholar]
  85. Turner, J.A., Leeder, M.R., Andrews, J.E., Rowe, P.J., van Calsteren, P. & Thomas, L. (2010) Testing rival tectonic uplift models for the Lechaion Gulf in the Gulf of Corinth rift. J. Geol. Soc., 167, 1237–1249.
    [Google Scholar]
  86. Zelilidis, A. (2000) Drainage evolution in a rifted basin, Corinth graben, Greece. Geomorphology, 35, 69–85.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12260
Loading
/content/journals/10.1111/bre.12260
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error