1887
Volume 30, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The Menderes Massif is a Tertiary metamorphic core complex tectonically exhumed in the late Oligocene–Miocene during coeval development of a series of E–W‐trending basins. This study analyses the source‐to‐sink evolution of the Gediz Graben and the exhumation pattern of the Central Menderes Massif at the footwall and hanging wall of the Gediz Detachment Fault. We use a comprehensive approach to detrital apatite fission track dating combining analysis of modern river sediments, analysis of fossil sedimentary successions and mineral fertility determinations. This approach allowed us to: (i) define the modern short‐term erosion pattern of the study area, (ii) unravel the long‐term exhumation history, (iii) identify major exhumation events recorded in the sedimentary basin fill and (iv) constrain the maximum depositional age of the sedimentary succession. Three main exhumation events are recorded in the analysed detrital samples: (i) a late Oligocene/early Miocene exhumation event involving the whole Menderes Massif; (ii) a late Miocene event involving the northern edge of the Central Menderes Massif; (iii) a Plio‐Quaternary more localized event involving only the western part of the southern margin of the basin (Salihli area) and bringing to the surface the Gediz Detachment and its intrusive footwall (Salihli granodiorite). The modern short‐term erosion pattern closely reflects this latter Plio‐Quaternary event. Single grain‐age distributions in the sedimentary basin fill highlight drainage pattern reorganizations in correspondence of the transition between different stratigraphic units, and allowed to better constrain the depositional age of the sedimentary units of the basin pointing to a possible onset of sedimentation in the basin during the middle Miocene.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12262
2017-09-12
2024-04-25
Loading full text...

Full text loading...

References

  1. Andersen, T. (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem. Geol., 216(3), 249–270.
    [Google Scholar]
  2. Benda, L. & Meulenkamp, J.E. (1979) Biostratigraphic correlations in the Eastern Mediterranean Neogene: 5. Calibration of sporomorph associations, marine microfossils and mammal zones, marine and continental stages and radiometric scale. VII International Congress of Mediterranean Neogene, Athens, 61–70.
  3. Benda, L. & Meulenkamp, J.E. (1990) Biostratigraphic correlation in the Eastern Mediterranean Neogene, 9. Sporomorph associations and event stratigraphy of the Eastern Mediterranean. Newsl. Stratigr., 23, 1–10.
    [Google Scholar]
  4. Bernet, M., Zattin, M., Garver, J.I., Brandon, M.T. & Vance, J.A. (2001) Steady‐state exhumation of the European Alps. Geology, 29, 35–38.
    [Google Scholar]
  5. Bozkurt, E. & Sözbilir, H. (2004) Tectonic evolution of the Gediz Graben: field evidence for an episodic, two‐stage extension in western Turkey. Geol. Mag., 141, 63–79.
    [Google Scholar]
  6. Brandon, M.T. (2002) Decomposition of mixed grain age distributions using Binomfit. On Track, 24, 13–18.
    [Google Scholar]
  7. Brewer, I.D., Burbank, D.W. & Hodges, K.V. (2003) Modelling detrital cooling‐age populations: insights from two Himalayan catchments. Basin Res., 15, 305–320.
    [Google Scholar]
  8. Brun, J.P. & Sokoutis, D. (2007) Kinematics of the southern Rhodope core complex (North Greece). Int. J. Earth Sci., 96(6), 1079–1099.
    [Google Scholar]
  9. Buscher, J.T., Hampel, A., Hetzel, R., Dunkl, I., Glotzbach, C., Struffert, A., Akal, C. & Rätz, M. (2013) Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. J. Geol. Soc. London, 170, 669–683.
    [Google Scholar]
  10. Carter, A. (1999) Present status and future avenues of source region discrimination and characterization using fission‐track analysis. Sed. Geol., 124, 31–45.
    [Google Scholar]
  11. Çiftçi, N.B. & Bozkurt, E. (2008) Folding of the Gediz Graben Fill, SW Turkey: extensional and/or contractional origin?Geodin. Acta, 21(3), 145–167.
    [Google Scholar]
  12. Ҫiftçi, N.B. & Bozkurt, E. (2009) Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sed. Geol., 216, 49–79.
    [Google Scholar]
  13. Çiftçi, N.B. & Bozkurt, E. (2010) Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the Graben Fill. Basin Res., 22, 846–873.
    [Google Scholar]
  14. Cohen, H.A., Dart, C.J., Akyüz, H.S. & Barka, A.A. (1995) Syn‐rift sedimentation and structural development of Gediz and Büyük Menderes graben, western Turkey. J. Geol. Soc. London, 152, 629–638.
    [Google Scholar]
  15. Dunkl, I. (2002) Trackkey: a Windows program for calculation and graphical presentation of fission track data. Comput. Geosci., 28, 3–12.
    [Google Scholar]
  16. Ediger, V.Ş., Batı, Z. & Yazman, M. (1996) Paleopalynology of possible hydrocarbon source rocks of the Alaşehir‐Turgutlu area in the Gediz Graben (western Anatolia). Turk. Assoc. Pet. Geol., 8, 94–112.
    [Google Scholar]
  17. Emre, T. (1996) Geology and tectonics of Gediz Graben. Turk. J. Earth Sci., 5, 171–185.
    [Google Scholar]
  18. Friedmann, S.J. & Burbank, D.W. (1995) Rift basins and supradetachment basins: intracontinental extensional end‐members. Basin Res., 7, 109–127.
    [Google Scholar]
  19. Gallagher, K., Brown, R. & Johnson, C. (1998) Fission track analysis and its application to geological problems. Annu. Rev. Earth Planet. Sci., 26, 519–572.
    [Google Scholar]
  20. Garver, J.I., Brandon, M.T., Roden‐Tice, M. & Kamp, P.J.J. (1999) Exhumation history of orogenic highlands determined by detrital fission‐track thermochronology. In: Exhumation Processes: Normal Faulting, Ductile Flow and Erosion (Ed. by RingU. , BrandonM.T. , ListerG.S. & WillettS.D. ) Geol. Soc. London Spec. Publ., 154, 283–304.
    [Google Scholar]
  21. Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C.W. & Gungor, T. (2001) An active bivergent rolling‐hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology, 29, 611–614.
    [Google Scholar]
  22. Gessner, K., Gallardo, L.A., Markwitz, V., Ring, U. & Thomson, S.N. (2013) What caused the denudation of the Menderes Massif: review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Res., 24(1), 243–274.
    [Google Scholar]
  23. Gibbs, A.D. (1984) Structural evolution of extensional basin margins. J. Geol. Soc. London, 141, 609–620.
    [Google Scholar]
  24. Glodny, J. & Hetzel, R. (2007) Precise U‐Pb ages of syn‐extensional Miocene intrusions in the central Menderes Massif, western Turkey. Geol. Mag., 144, 235–246.
    [Google Scholar]
  25. Gürer, A., Gürer, Ö.F., Pinçe, A. & İlkişik, O.M. (2001) Conductivity structure along the Gediz Graben, West Anatolia, Turkey: tectonic implications. Int. Geol. Rev., 43, 1129–1144.
    [Google Scholar]
  26. Gürer, A., Pinçe, A., Gürer, F. & İlkişik, O.M. (2002) Resistivity distribution in the Gediz Graben and its implications for crustal structure. Turk. J. Earth Sci., 11, 15–25.
    [Google Scholar]
  27. Hetzel, R., Ring, U., Akal, C. & Troesch, M. (1995) Miocene NNE‐directed extensional unroofing in the Menderes massif, southwestern Turkey. J. Geol. Soc. London, 152, 639–654.
    [Google Scholar]
  28. Hurford, A.J. (1990) Standardization of fission‐track dating calibration: recommendation by the Fission Track Working Group of the I.U.G.S.: subcommission on geochronology. Chem. Geol., 80, 171–178.
    [Google Scholar]
  29. Işik, V., Seyitoğlu, G. & Çemen, I. (2003) Ductile–brittle transition along the Alas_ehir detachment fault and its structural relationship with the Simav detachment fault, Menderes massif, western Turkey. Tectonophysics, 374, 1–18.
    [Google Scholar]
  30. Iztan, H. & Yazman, M. (1991) Geology and hydrocarbon potential of the Alaşehir (Manisa) area, western Turkey. Proceedings of the International Earth Sciences Congress on Aegean Regions, Izmir, 327–338.
  31. John, B.E. & Cheadle, M.J. (2010) Deformation and alteration associated with oceanic and continental detachment fault systems: are they similar? In: Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges (Ed. by RonaP.A. , DeveyC.W. , DymentJ. & MurtonB.J. ) Geophys. Monogr. Ser., 188, 175–205.
    [Google Scholar]
  32. Jolivet, L. & Brun, J.P. (2010) Cenozoic geodynamic evolution of the Aegean. Int. J. Earth Sci., 99, 109–138.
    [Google Scholar]
  33. Jolivet, L. & Faccenna, C. (2000) Mediterranean extension and the Africa‐Eurasia collision. Tectonics, 19(6), 1095–1106.
    [Google Scholar]
  34. Karamanderesi, İ.H. (2013) Characteristics of Geothermal Reservoirs in Turkey. IGA Academy Report 0102‐2013, 34 pp.
  35. Kent, E., Boulton, S.J., Stewart, I.S., Whittaker, A.C. & Alçiçek, M.C. (2016) Geomorphic and geologic constraints on the active normal faulting of the Gediz (Alaşehir) Graben, Western Turkey. J. Geol. Soc. London, 173, 666–678.
    [Google Scholar]
  36. Koçyiğit, A., Yusufoğlu, H. & Bozkurt, E. (1999) Evidence from the Gediz Graben for episodic two‐stage extension in western Turkey. J. Geol. Soc. London, 156, 605–616.
    [Google Scholar]
  37. Lips, A.L.W., Cassard, D., Sözbilir, H., Yilmaz, H. & Wijbrans, J.R. (2001) Multistage exhumation of the Menderes Massif, western Anatolia (Turkey). Int. J. Earth Sci. (Geologische Rundschau), 89, 781–792.
    [Google Scholar]
  38. Lister, G.S. & Davis, G.A. (1989) The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A. J. Struct. Geol., 11(1/2), 65–94.
    [Google Scholar]
  39. Malusà, M.G. & Balestrieri, M.L. (2012) Burial and exhumation across the Alps‐Apennines junction zone constrained by fission‐track analysis on modern river sands. Terra Nova, 24, https://doi.org/10.1111/j.1365-3121.2011.01057.x.
    [Google Scholar]
  40. Malusà, M.G., Villa, I.M., Vezzoli, G. & Garzanti, E. (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth Planet. Sci. Lett., 301, 324–336.
    [Google Scholar]
  41. Malusà, M.G., Carter, A., Limoncelli, M., Villa, I.M. & Garzanti, E. (2013) Bias in detrital zircon geochronology and thermochronometry. Chem. Geol., 359, 90–107.
    [Google Scholar]
  42. Malusà, M.G., Resentini, A. & Garzanti, E. (2016) Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res., 31, 1–19.
    [Google Scholar]
  43. MTA – General Directorate of Mineral Research and Exploration
    MTA – General Directorate of Mineral Research and Exploration (2002a) 1:500.000 Scale Geological Map of Turkey – IZMIR. MTA, Ankara, Turkey.
    [Google Scholar]
  44. MTA – General Directorate of Mineral Research and Exploration
    MTA – General Directorate of Mineral Research and Exploration (2002b) 1:500.000 Scale Geological Map of Turkey – DENIZLI. MTA, Ankara, Turkey.
    [Google Scholar]
  45. Oberhänsli, R., Candan, O. & Wilke, F. (2010) Geochronological evidence of Pan‐African eclogites from the central Menderes Massif, Turkey. Turk. J. Earth Sci., 19, 431–447.
    [Google Scholar]
  46. Öner, Z. & Dilek, Y. (2011) Supradetachment basin evolution during continental extension: the Aegean province of western Anatolia, Turkey. Geol. Soc. Am. Bull., 123, 2115–2141.
    [Google Scholar]
  47. Platt, J.P., Behr, W.M. & Cooper, F.J. (2015) Metamorphic core complexes: windows into the mechanics and rheology of the crust. J. Geol. Soc. London, 172, 9–27.
    [Google Scholar]
  48. Purvis, M. & Robertson, A.H.F. (2005) Sedimentation of the Neogene‐Recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sed. Geol., 173, 373–408.
    [Google Scholar]
  49. Régnier, J.L., Ring, U., Passchier, C.W., Gessner, K. & Gungor, T. (2003) Contrasting metamorphic evolution of metasedimentary rocks from the Cine and Selimiye nappes in the Anatolide belt, western Turkey. J. Metamorph. Geol., 21, 699–721.
    [Google Scholar]
  50. Resentini, A. & Malusà, M.G. (2012) Sediment budgets by detrital apatite fission‐track dating (Rivers Dora Baltea and Arc, Western Alps). Geol. Soc. Am. Spec. Pap., 487, 125–140.
    [Google Scholar]
  51. Resentini, A., Malusà, M.G. & Garzanti, E. (2013) MinSORTING: an Excel® worksheet for modelling mineral grainsize distribution in sediments, with application to detrital geochronology and provenance studies. Comput. Geosci., 59, 90–97.
    [Google Scholar]
  52. Ring, U., Gessner, K., Gungor, T. & Passchier, C.W. (1999) The Menderes Massif of western Turkey and the Cycladic Massif in the Aegean — do they really correlate?J. Geol. Soc. London, 156, 3–6.
    [Google Scholar]
  53. Ring, U., Willner, A.P. & Lackmann, W. (2001) Stacking of nappes with unrelated pressure–temperature paths: an example from the Menderes nappes of western Turkey. Am. J. Sci., 301, 912–944.
    [Google Scholar]
  54. Ring, U., Johnson, C., Hetzel, R. & Gessner, K. (2003) Tectonic denudation of a Late Cretaceous‐Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geol. Mag., 140, 421–441.
    [Google Scholar]
  55. Rossetti, F., Asti, R., Faccenna, C., Gerdes, A., Lucci, F. & Theye, T. (2017) Magmatism and crustal extension: constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey). Lithos, 282–283, 145–162.
    [Google Scholar]
  56. Sarıca, N. (2000) The Plio‐Pleistocene age of Büyük Menderes and Gediz grabens and their tectonic significance on N‐S extensional tectonics in West Anatolia: mammalian evidence from the continental deposits. Geol. J., 35, 1–24.
    [Google Scholar]
  57. Şen, Ş. & Seyitoğlu, G. (2009) Magnetostratigraphy of early‐middle Miocene deposits from E‐W trending Ala?ehir and Büyük Menderes grabens in western Turkey, and its tectonic implications. In: Geodynamics of Collision and Collapse at the Africa‐Arabia‐Eurasia subduction zone (Ed. by Van HinsbergenD.J.J. , EdwardsM.A. & GoversR. ), Geol. Soc. London Spec. Publ., 311, 321–342.
    [Google Scholar]
  58. Şengör, A.M.C. (1987) Cross faults and differential stretching of hangingwalls in regions of low‐angle normal faulting: examples from Western Turkey. In: Continental Extensional Tectonics (Ed. by CowardM.P. , DeweyJ.F. & HancockP.L. ), Geol. Soc. Spec. Pub., 28, 575–589.
    [Google Scholar]
  59. Şengör, A.M.C. & Yilmaz, Y. (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.
    [Google Scholar]
  60. Şengör, A.M.C., Satir, M. & Akkök, R. (1984) Timing of the tectonic events in the Menderes massif, western Turkey: implications for tectonic evolution and evidence for Pan‐ African basement in Turkey. Tectonics, 3, 693–707.
    [Google Scholar]
  61. Seyitoğlu, G. & Scott, B.C. (1992) The age of the Büyük Menderes graben (west Turkey) and its tectonic implications. Geol. Mag., 129, 239–242.
    [Google Scholar]
  62. Seyitoğlu, G. & Scott, B.C. (1996) The cause of N‐S extensional tectonics in western Turkey: tectonic escape vs back‐arc spreading vs orogenic collapse. J. Geodyn., 22, 145–153.
    [Google Scholar]
  63. Seyitoğlu, G., Tekeli, O., Çemen, İ., Şen, Ş. & Işık, V. (2002) The role of flexural rotation/rolling hinge model in the tectonic evolution of the Alaşehir Graben, western Turkey. Geol. Mag., 139, 15–26.
    [Google Scholar]
  64. Seyitoğlu, G., Işik, V. & Esat, K. (2014) A 3D model for the formation of turtleback surfaces: the Horzum Turtleback of western Turkey as a case study. Turk. J. Earth Sci., 23, 479–494.
    [Google Scholar]
  65. Sözbilir, H. (2001) Extensional tectonics and the geometry of related macroscopic structures: field evidence from the Gediz detachment, western Turkey. Turk. J. Earth Sci., 10, 51–67.
    [Google Scholar]
  66. Thomson, S.N. & Ring, U. (2006) Thermochronologic evaluation of post‐collision extension in the Anatolide Orogen, western Turkey. Tectonics, 25, TC3005.
    [Google Scholar]
  67. Van Hinsbergen, D.J.J. & Meulenkamp, J.E. (2006) Neogene supradetachment basin development on Crete (Greece) during exhumation of the South Aegean core complex. Basin Res., 18, 103–124.
    [Google Scholar]
  68. Vermeesch, P. (2004) How many grains are needed for a provenance study?Earth Planet. Sci. Lett., 224(3), 441–451.
    [Google Scholar]
  69. Vermeesch, P. (2009) RadialPlotter: a Java application for fission track, luminescence and other radial plots. Radiat. Meas., 44(4), 409–410.
    [Google Scholar]
  70. Whitney, D.L., Teyssier, C., Rey, P. & Buck, W.R. (2013) Continental and oceanic core complexes. Geol. Soc. Am. Bull., 125(3/4), 273–298.
    [Google Scholar]
  71. Yılmaz, Y., Genç, S.C., Gürer, Ö.F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, Ş. & Elmas, A. (2000) When did western Anatolian grabens begin to develop. In: Tectonics and Magmatism in Turkey and the Surrounding Area (Ed. by BozkurtE. , WinchesterJ.A. & PiperJ.D.A. ) Geol. Soc. London Spec. Publ., 173, 353–384.
    [Google Scholar]
  72. Zlatkin, O., Avigad, D. & Gerdes, A. (2013) Evolution and provenance of Neoproterozoic basement and lower Paleozoic siliciclastic cover of the Menderes Massif (western Taurides): coupled U‐Pb–Hf zircon isotope geochemistry. Gondwana Res., 23, 682–700.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12262
Loading
/content/journals/10.1111/bre.12262
Loading

Data & Media loading...

Supplements

Apatite fertility map and short‐term erosion pattern of the study area (the size of the cubes is proportional to the relative (nondimensional) short‐term erosion rate of each subarea).

Dense Mineral Concentration (left) and Grain Density values (right) in samples from the northern (DX) and southern (SX) tributaries of the main river.

Diagrams showing the relationship between AFT grain‐ages and grain‐size (top) and between AFT grain‐ages and grain shape (bottom) in the detrital samples collected in the modern rivers.

Fertility values, detrital apatite partitioning and drainage areas for samples from the modern Alaşehir/Gediz river used for modern short‐term erosion pattern determination (see Fig. S1)

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error