1887
Volume 30, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Studies in both modern and ancient Cordilleran‐type orogenic systems suggest that processes associated with flat‐slab subduction control the geological and thermal history of the upper plate; however, these effects prove difficult to deconvolve from processes associated with normal subduction in an active orogenic system. We present new geochronological and thermochronological data from four depositional areas in the western Sierras Pampeanas above the Central Andean flat‐slab subduction zone between 27° S and 30° S evaluating the spatial and temporal thermal conditions of the Miocene–Pliocene foreland basin. Our results show that a relatively high late Miocene–early Pliocene geothermal gradient of 25–35 °C km−1 was typical of this region. The absence of along‐strike geothermal heterogeneities, as would be expected in the case of migrating flat‐slab subduction, suggests that either the response of the upper plate to refrigeration may be delayed by several millions of years or that subduction occurred normally throughout this region through the late Miocene. Exhumation of the foreland basin occurred nearly synchronously along strike from 27 to 30° S between . 7 Ma and 4 Ma. We propose that coincident flat‐slab subduction facilitated this wide‐spread exhumation event. Flexural modelling coupled with geohistory analysis show that dynamic subsidence and/or uplift associated with flat‐slab subduction is not required to explain the unique deep and narrow geometry of the foreland basin in the region implying that dynamic processes were a minor component in the creation of accommodation space during Miocene–Pliocene deposition.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12265
2017-09-26
2024-04-19
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Allen, J.R. (2009) Basin Analysis: Principles and Applications, 549 pp. Blackwell Publishing Company, Hoboken, NJ, USA.
    [Google Scholar]
  2. Allmendinger, R.A. & Judge, P.A. (2014) The Argentine Precordillera: a foreland thrust belt proximal to the subducted plate. Geosphere, 10, 1203–1218.
    [Google Scholar]
  3. Allmendinger, R.W., Ramos, V.A., Jordan, T.E., Palma, M. & Isacks, B.L. (1983) Paleogeography and Andean structural geometry, northwest Argentina. Tectonics, 2, 1–16.
    [Google Scholar]
  4. Allmendinger, R.W., Figueroa, D., Snyder, D., Beer, J., Mpodozis, C. & Isacks, B.L. (1990) Foreland shortening and crustal balancing in the Andes at 30°S latitude. Tectonics, 9, 789–809.
    [Google Scholar]
  5. Amidon, W.H., Ciccioli, P.L., Marenssi, S.A., Limarino, C.O., Fisher, G.B., Burbank, D.W. & Kylander‐Clark, A. (2016) U‐Pb ages of detrital and volcanic zircons of the Toro Negro Formation, northwestern Argentina: age, provenance and sedimentation rates. J. S. Am. Earth Sci., 70, 237–250.
    [Google Scholar]
  6. Ammirati, J.‐B., Luján, S.P., Alvarado, P., Beck, S., Rocher, S. & Zandt, G. (2016) High‐resolution images above the Pampean flat slab of Argentina (31–32°S) from local receiver functions: implications on regional tectonics. Earth Planet. Sci. Lett., 450, 29–39.
    [Google Scholar]
  7. Anderson, M., Alvarado, P., Zandt, G. & Beck, S. (2007) Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophys. J. Int., 171, 419–434.
    [Google Scholar]
  8. Armstrong, P.A. (2005) Thermochronometers in Sedimentary Basins. In: Reviews in Mineralogy and Geochemistry, 58 (Ed. by P.W.Reiners & T.A.Ehlers ), pp. 499–525.
    [Google Scholar]
  9. Armstrong, P.A. & Chapman, D.S. (1998) Beyond surface heat flow: an example from a tectonically active sedimentary basin. Geology, 26, 183–186.
    [Google Scholar]
  10. Astini, R.A., Davila, F.M., Gamundí, O.L., Gómez, F.J., Collo, G., Ezpeleta, M., Martina, F. & Ortiz, A. (2005) Cuencas de la región precordillerana. In: Frontera Exploratoria de la Argentina (Ed. by G.A.Chebli , J.S.Cortiñas & L.A.Spalletti ), pp. 115–146. Inst. Argent. del Pet. y del Gas, Buenos Aires.
    [Google Scholar]
  11. Beer, J.A. (1990) Steady sedimentation and Lithologic Completeness, Bermejo Basin, Argentina. J. Geol., 98, 501–517.
    [Google Scholar]
  12. Beer, J.A. & Jordan, T.E. (1989) The effects of neogene thrusting on deposition in the Bermejo Basin, Argentina. J. Sediment. Petrol., 59, 330–345.
    [Google Scholar]
  13. Bernet, M. (2009) A field‐based estimate of the zircon fission‐track closure temperature. Chem. Geol., 259, 181–189.
    [Google Scholar]
  14. Cahill, T. & Isacks, B.L. (1992) Seismicity and shape of the subducted Nazca Plate. J. Geophys. Res., 97, 17503–17529.
    [Google Scholar]
  15. Cardozo, N. & Jordan, T. (2001) Causes of spatially variable tectonic subsidence in the Miocene Bermejo Foreland Basin, Argentina. Basin Res., 13, 335–357.
    [Google Scholar]
  16. Carrapa, B., Strecker, M. & Sobel, E. (2006) Cenozoic orogenic growth in the Central Andes: evidence from sedimentary rock provenance and apatite fission track thermochronology in the Fiambalá Basin, southernmost Puna Plateau margin (NW Argentina). Earth Planet. Sci. Lett., 247, 82–100.
    [Google Scholar]
  17. Carrapa, B., Hauer, J., Schoenbohm, L., Strecker, M.R., Schmitt, A.K., Villanueva, A. & Gomez, J.S. (2008) Dynamics of deformation and sedimentation in the northern Sierras Pampeanas: an integrated study of the Neogene Fiambala basin, NW Argentina. Geol. Soc. Am. Bull., 120, 1518–1543.
    [Google Scholar]
  18. Carrapa, B., Hauer, J., Schoenbohm, L., Strecker, M.R., Schmitt, A.K., Villanueva, A. & Gomez, J.S. (2010) Dynamics of deformation and sedimentation in the northern Sierras Pampeanas: an integrated study of the Neogene Fiambala basin, NW Argentina:Reply. Geol. Soc. Am. Bull., 122, 950–953.
    [Google Scholar]
  19. Carrapa, B., Trimble, J.D. & Stockli, D.F. (2011) Patterns and timing of exhumation and deformation in the Eastern Cordillera of NW Argentina revealed by (U‐Th)/He thermochronology. Tectonics, 30. https://doi.org/10.1029/2010tc002707.
    [Google Scholar]
  20. Carrapa, B., Bywater‐Reyes, S., Decelles, P.G., Mortimer, E. & Gehrels, G.E. (2012) Late Eocene‐Pliocene basin evolution of the Eastern Cordillera of northwestern Argentina (25‐26 S): regional implications for Andean orogenic wedge development. Basin Res., 24, 249–268.
    [Google Scholar]
  21. Carrapa, B., Huntington, K.W., Clementz, M., Quade, J., Bywater‐Reyes, S., Schoenbohm, L.M. & Canavan, R.R. (2014) Uplift of the Central Andes of NW Argentina associated with upper crustal shortening, revealed by multiproxy isotopic analyses. Tectonics, 33, 1039–1054.
    [Google Scholar]
  22. Ciccioli, P.L., Limarino, C.O., Marenssi, S.A., Tedesco, A.M. & Tripaldi, A. (2011) Tectosedimentary evolution of the La Troya and Vinchina depocenters (northern Bermejo Basin, Tertiary), La Rioja, Argentina. In: Cenozoic Geology of the Central Andes of Argentina (Ed. by J.A.Salfity & R.A.Marquillas ), pp. 91–110. SCS Publisher, Salta.
    [Google Scholar]
  23. Ciccioli, P.L., Limarino, C.O., Friedman, R. & Marenssi, S.A. (2014) New high precision U‐Pb ages for the Vinchina Formation: implications for the stratigraphy of the Bermejo Andean foreland basin (La Rioja province, western Argentina). J. S. Am. Earth Sci., 56, 200–213.
    [Google Scholar]
  24. Collo, G., Dávila, F.M., Nóbile, J.C. & Astini, R.A. (2009) Burial History and estimation of ancient thermal gradients in deep synorogenic foreland sequences: the Neogene Vinchina Basin, South‐Central Andes. Actas del XVII Congreso Geologico Argentino, 85–86.
    [Google Scholar]
  25. Collo, G., Dávila, F.M., Nobile, J., Astini, R.A. & Gehrels, G. (2011) Clay mineralogy and thermal history of the Neogene Vinchina Basin, central Andes of Argentina: analysis of factors controlling the heating conditions. Tectonics, 30. https://doi.org/10.1029/2010tc002841.
    [Google Scholar]
  26. Collo, G., Dávila, F.M., Teixeira, W., Nóbile, J.C., Anna, L.S. & Carter, A. (2017) Isotopic and thermochronologic evidence of extremely cold lithosphere associated with a slab flattening in the Central Andes of Argentina. Basin Res., 29, 16–40.
    [Google Scholar]
  27. Coney, P.J. & Reynolds, S.J. (1977) Cordilleran Benioff zones. Nature, 270, 403–406.
    [Google Scholar]
  28. Dávila, F.M. (2010) Dynamics of deformation and sedimentation in the northern Sierras Pampeanas: an integrated study of the Neogene Fiambala Basin, NW Argentina: comment and Discussion. Geol. Soc. Am. Bull., 122, 946–949.
    [Google Scholar]
  29. Dávila, F.M. & Astini, R.A. (2007) Cenozoic provenance history of synorogenic conglomerates in western Argentina (Famatina belt): implications for Central Andean foreland development. Geol. Soc. Am. Bull., 119, 609–622.
    [Google Scholar]
  30. Dávila, F.M. & Carter, A. (2013) Exhumation history of the Andean broken foreland revisited. Geology, 41, 443–446.
    [Google Scholar]
  31. Dávila, F.M. & Lithgow‐Bertelloni, C. (2015) Dynamic uplift during slab flattening. Earth Planet. Sci. Lett., 425, 34–43.
    [Google Scholar]
  32. Dávila, F.M., Astini, R.A., Jordan, T.E. & Kay, S.M. (2004) Early Miocene andesite conglomerates in the Sierra de Famatina, broken foreland region of western Argentina, and documentation of magmatic broadening in the southern Central. Andes Journal of South American Earth Sciences, 17, 89–101.
    [Google Scholar]
  33. Dávila, F.M., Collo, G., Nobile, J., Astini, R.A. & Gehrels, G. (2008) U‐Pb detrital ages on a tuffaceous sandstone sheet in the Vinchina Formation, La Rioja: deposition and exhumation implications. Actas del XVII Congress Geologico Argentina, 95–96.
    [Google Scholar]
  34. Dávila, F.M., Lithgow‐Bertelloni, C. & Giménez, M. (2010) Tectonic and dynamic controls on the topography and subsidence of the Argentine Pampas: the role of the flat slab. Earth Planet. Sci. Lett., 295, 187–194.
    [Google Scholar]
  35. Decelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8(2), 105–123.
    [Google Scholar]
  36. Decelles, P.G. & Graham, S.A. (2015) Cyclical processes in the North American Cordilleran orogenic system. Geology, 43, 499–502.
    [Google Scholar]
  37. Decelles, P.G., Carrapa, B. & Gehrels, G.E. (2007) Detrital zircon U‐Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina. Geology, 35, 323–326.
    [Google Scholar]
  38. Decelles, P.G., Ducea, M.N., Kapp, P. & Zandt, P. (2009) Cyclicity in Cordilleran orogenic systems. Nat. Geosci., 2, 251–257.
    [Google Scholar]
  39. Decelles, P.G., Carrapa, B., Horton, B.K. & Gehrels, G.E. (2011) Cenozoic foreland basin system in the central Andes of northwestern Argentina: implications for Andean geodynamics and modes of deformation. Tectonics, 30. https://doi.org/10.1029/2011tc002948.
    [Google Scholar]
  40. Decelles, P.G., Zandt, G., Beck, S.L., Currie, C.A., Ducea, M.N., Kapp, P., Gehrels, G.E., Carrapa, B., Quade, J. & Schoenbohm, L.M. (2015) Cyclical orogenic processes in the Cenozoic central Andes. In: Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (Ed. by DeCellesP.G. , DuceaM.N. , CarrapaB. & KappP.A. ) Geol. Soc. Am. Mem., 212. https://doi.org/10.1130/2015.1212(22).
    [Google Scholar]
  41. Deming, D. (1989) Application of bottom‐hole temperature corrections in geothermal studies. Geothermics, 18, 775–786.
    [Google Scholar]
  42. Dickinson, W.R. & Gehrels, G.E. (2009) Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett., 288, 115–125.
    [Google Scholar]
  43. Dodson, M.H. (1973) Closure temperature in cooling geochronological and petrological systems. Contrib. Miner. Petrol., 40, 259–274.
    [Google Scholar]
  44. Donelick, R.A. (2005) Apatite Fission‐Track Analysis. In: Reviews in Mineralogy and Geochemistry, 58 (Ed. by P.W.Reiners & T.A.Ehlers ), pp. 49–94.
    [Google Scholar]
  45. Dumitru, T.A. (1990) Subnormal Cenozoic geothermal gradients in the extinct Sierra Nevada magmatic arc: consequences of Laramide and Post‐Laramide shallow‐angle subduction. J. Geophys. Res., 95, 4925–4941.
    [Google Scholar]
  46. Dumitru, T.A., Gans, P.B., Foster, D.A. & Miller, E.L. (1991) Refrigeration of the western Cordilleran lithosphere during Laramide shallow‐angle subduction. Geology, 19, 1145–1148.
    [Google Scholar]
  47. Echavarria, L., Hernández, R., Allmendinger, R. & Reynolds, J. (2003) Subandean thrust and fold belt of northwestern Argentina: geometry and timing of the Andean evolution. AAPG Bulletin, 87, 965–985.
    [Google Scholar]
  48. Ehlers, T.A. & Farley, K.A. (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet. Sci. Lett., 206, 1–14.
    [Google Scholar]
  49. Farley, K.A. (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., 105, 2903–2914.
    [Google Scholar]
  50. Farley, K.A., Wolf, R.A. & Silver, L.T. (1996) The effects of long alpha‐stopping distances on (U‐Th)/He ages. Geochim. Cosmochim. Acta, 60(21), 4223–4229.
    [Google Scholar]
  51. Fleischer, R.L., Price, P.B. & Walker, R.M. (1975) Nuclear Tracks in Solids: Principles and Applications, pp. 1–605. University of California Press, Berkeley and Los Angeles, CA.
    [Google Scholar]
  52. Flowers, R.M., Ketcham, R.A., Shuster, D.L. & Farley, K.A. (2009) Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta, 73, 2347–2365.
    [Google Scholar]
  53. Fosdick, J.C., Carrapa, B. & Ortíz, G. (2015) Faulting and erosion in the Argentine Precordillera during changes in subduction regime: reconciling bedrock cooling and detrital records. Earth Planet. Sci. Lett., 432, 73–83.
    [Google Scholar]
  54. Fosdick, J.C., Reat, E.J., Carrapa, B., Ortiz, G. & Alvarado, P.M. (2017) Retroarc basin reorganization and aridification during Paleogene uplift of the southern central Andes. Tectonics, 36. https://doi.org/10.1002/2016tc004400.
    [Google Scholar]
  55. Gans, C.R., Beck, S.L., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M. & Linkimer, L. (2011) Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high‐resolution results. Geophys. J. Int., 186, 45–58.
    [Google Scholar]
  56. Green, P.F., Duddy, I.R., Laslett, G.M., Hegarty, K.A., Gleadow, A.J.W. & Lovering, J.F. (1989) Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology: Isotope Geoscience section, 79, 155–182.
    [Google Scholar]
  57. Gutscher, M.‐A., Spakman, W., Bijwaard, H. & Engdahl, E.R. (2000) Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics, 19(5), 814–833.
    [Google Scholar]
  58. Heller, P.L. & Liu, L. (2016) Dynamic topography and vertical motion of the U.S. Rocky Mountain region prior to and during the Laramide orogeny. Geol. Soc. Am. Bull., 128(5–6), 973–988.
    [Google Scholar]
  59. van Hinte, J.E. (1978) Geohistory analysis – Applications of Micropaleontology in Exploration Geology. AAPG Bulletin, 62, 201–222.
    [Google Scholar]
  60. Hu, J. & Liu, L. (2016) Abnormal seismological and magmatic processes controlled by the tearing South American flat slabs. Earth Planet. Sci. Lett., 450, 40–51.
    [Google Scholar]
  61. Hu, J., Liu, L., Hermosillo, A. & Zhou, Q. (2016) Simulation of late Cenozoic South American flat‐slab subduction using geodynamic models with data assimilation. Earth Planet. Sci. Lett., 438, 1–13.
    [Google Scholar]
  62. Huang, W.L. (1993) An experimentally derived kinetic model for smectite‐to‐illite conversion and its use as a geothermometer. Clays Clay Miner., 41, 162–177.
    [Google Scholar]
  63. von Huene, R., Corvalán, J., Flueh, E.R., Hinz, K., Korstgard, J., Ranero, C.R. & Weinrebe, W. (1997) Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics, 16, 474–478.
    [Google Scholar]
  64. Hurford, A.J. & Green, P.F. (1983) The zeta age calibration of fission‐track dating. Chem. Geol., 41, 285–317.
    [Google Scholar]
  65. Johnson, N.M., Jordan, T.E., Johnsson, P.A. & Naeser, C.W. (1986) Magnetic Polarity Stratigraphy, Age and Tectonic Setting of Fluvial Sediments in an Eastern Andean Foreland Basin, San Juan Province, Argentina. In: Foreland Basins (Ed. by P.A.Allen & P.Homewood ), pp. 63–75. Blackwell Science Publications, London.
    [Google Scholar]
  66. Jordan, T.E. & Allmendinger, R.W. (1986) The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation. Am. J. Sci., 286, 737–764.
    [Google Scholar]
  67. Jordan, T.E., Allmendinger, R.W., Damanti, J.F. & Drake, R.E. (1993) Chronology of motion in a complete thrust belt: the Precordillera, 30‐31°S, Andes Mountains. J. Geol., 101, 135–156.
    [Google Scholar]
  68. Jordan, T.E., Schlunegger, F. & Cardozo, N. (2001) Unsteady and spatially variable evolution of the Neogene Andean Bermejo foreland basin, Argentina. J. S. Am. Earth Sci., 14, 775–798.
    [Google Scholar]
  69. Kay, S.M. & Abbruzzi, J.M. (1996) Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat‐slab” between 30°S and 32°S. Tectonophysics, 259, 15–28.
    [Google Scholar]
  70. Kay, S.M. & Coira, B.L. (2009) Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano‐Puna Plateau. In: Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision: Geological Society of America Memoirs, 204 (Ed. by S.M.Kay , V.A.Ramos & W.R.Dickinson ), pp. 229–259. Geological Society of America, Boulder, CO.
    [Google Scholar]
  71. Kay, S.M. & Mpodozis, C. (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat‐slab. J. S. Am. Earth Sci., 15, 39–57.
    [Google Scholar]
  72. Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J. & Hurford, A.J. (2007) Improved modeling of fission‐track annealing in apatite. Am. Miner., 92, 799–810.
    [Google Scholar]
  73. Liu, L., Gurnis, M., Seton, M., Saleeby, J., Müller, R.D. & Jackson, J.M. (2010) The role of oceanic plateau subduction in the Laramide orogeny. Nat. Geosci., 3(5), 353–357.
    [Google Scholar]
  74. Naeser, N.D., Naeser, C.W. & McCulloh, T.H. (1989) The application of fission‐track dating to the depositional and thermal history of rocks in sedimentary basins. In: Thermal History of Sedimentary Basins; Methods and Case Histories (Ed. by N.D.Naeser & T.H.McCullough ), pp. 157–180. Springer‐Verlag, New York.
    [Google Scholar]
  75. Painter, C.S. & Carrapa, B. (2013) Flexural versus dynamic processes of subsidence in the North American Cordillera foreland basin. Geophys. Res. Lett., 40, 4249–4253.
    [Google Scholar]
  76. Pérez‐Gussinyé, M., Lowry, A.R. & Watts, A.B. (2007) Effective elastic thickness of South America and its implications for intracontinental deformation. Geochem. Geophys. Geosyst., 8(5) https://doi.org/10.1029/2006gc001511.
    [Google Scholar]
  77. Pérez‐Gussinyé, M., Lowry, A.R., Morgan, J.P. & Tassara, A. (2008) Effective elastic thickness variations along the Andean margin and their relationship to subduction geometry. Geochem. Geophys. Geosyst., 9(2) https://doi.org/10.1029/2007gc001786.
    [Google Scholar]
  78. Perry, E. (1970) Burial diagenesis in gulf coast pelitic sediments. Clays Clay Miner., 18, 165–177.
    [Google Scholar]
  79. Pilger, R.H. (1981) Plate reconstructions, aseismic ridges, and low‐angle subduction beneath the Andes. Geol. Soc. Am. Bull., 92, 448–456.
    [Google Scholar]
  80. Pilger, R.H. (1984) Cenozoic plate kinematics, subduction and magmatism: South American Andes. J. Geol. Soc., 141, 793–802.
    [Google Scholar]
  81. Price, P.B. & Walker, R.M. (1963) Fossil tracks of charged particles in mica and the age of minerals. J. Geophys. Res., 68(16), 4847–4862.
    [Google Scholar]
  82. Pytte, A.M. & Reynolds, R.C. (1989) The Thermal Transformation of Smectite to Illite. In: Thermal History of Sedimentary Basinss; Methods and Case Histories (Ed. by N.D.Naeser & T.H.McCullough ), pp. 133–140. Springer‐Verlag, New York.
    [Google Scholar]
  83. Ramos, V.A. (1970) Estratigrafía y estructura del Terciario en la Sierra de los Colorados (Provincia de La Rioja), República Argentina. Revista de la Asociación Geológica Argentina, 25, 350–382.
    [Google Scholar]
  84. Ramos, V.A. (2009) Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In: Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision: Geological Society of America Memoirs, 204 (Ed. by S.M.Kay , V.A.Ramos & W.R.Dickinson ), pp. 31–65. Geological Society of America, Boulder, CO.
    [Google Scholar]
  85. Ramos, V.A. (2010) The Grenville‐age basement of the Andes. J. S. Am. Earth Sci., 29, 77–91.
    [Google Scholar]
  86. Ramos, V.A. & Folguera, A. (2009) Andean flat‐slab subduction through time. Geological Society, London, Special Publications, 327, 31–54.
    [Google Scholar]
  87. Ramos, V.A., Cristallini, E.O. & Pérez, D.J. (2002) The Pampean flat‐slab of the Central Andes. J. S. Am. Earth Sci., 15, 59–78.
    [Google Scholar]
  88. Reiners, P.W. & Brandon, M.T. (2006) Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci., 34, 419–466.
    [Google Scholar]
  89. Reynolds, J.H., Jordan, T.E., Johnson, N.M., Damanti, J.F. & Tabbutt, K.D. (1990) Neogene deformation of the flat‐subduction segment of the Argentine‐Chilean Andes: magnetostratigraphic constraints from Las Juntas, La Rioja province. Argentina. Geological Society of America Bulletin, 102(12), 1607–1622.
    [Google Scholar]
  90. Reynolds, J.H., Hernández, R.M., Galli, C.I. & Idleman, B.D. (2001) Magnetostratigraphy of the Quebrada La Porcelana section, Sierra de Ramos, Salta Province, Argentina: age limits for the Neogene Orán Group and uplift of the southern Sierras Subandinas. J. S. Am. Earth Sci., 14, 681–692.
    [Google Scholar]
  91. Safipour, R., Carrapa, B., Decelles, P.G. & Thomson, S.N. (2015) Exhumation of the Precordillera and northern Sierras Pampeanas and along‐strike correlation of the Andean orogenic front, northwestern, Argentina, In: Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (Ed. by P.G.DeCelles , M.N.Ducea , B.Carrapa & P.A.Kapp ) Geol. Soc. Am. Mem., pp. 181–199. Geological Society of America, Boulder CO.
    [Google Scholar]
  92. Schepers, G., van Hinsbergen, D.J.J., Spakman, W., Kosters, M.E., Boschman, L.M. & McQuarrie, N. (2017) South‐American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes. Nat. Commun., 8, 1–9.
    [Google Scholar]
  93. Tabbutt, K., Naeser, C.W. & Jordan, T.E. (1989) New fission‐track ages of Mio‐Pliocene tuffsin the Sierras Pampeanas and Precordillera of Argentina. Revista, Asociacion Geologica Argentina, 44, 408–419.
    [Google Scholar]
  94. Tassara, A., Swain, C., Hackney, R. & Kirby, J. (2007) Elastic thickness structure of South America estimated using wavelets and satellite‐derived gravity data. Earth Planet. Sci. Lett., 253, 17–36.
    [Google Scholar]
  95. Thomas, W.A. & Astini, R.A. (1996) The Argentine Precordillera: A Traveler from the Ouachita Embayment of North American Laurentia. Science, 273, 752–757.
    [Google Scholar]
  96. Tripaldi, A. & Limarino, C.O. (2005) Vallecito formation (Miocene): the evolution of an eolian system in an Andean foreland basin (northwestern Argentina). J. S. Am. Earth Sci., 19, 343–357.
    [Google Scholar]
  97. Turcotte, D. & Schubert, G. (2014) Geodynamics. Cambridge University Press, New York.
    [Google Scholar]
  98. Val, P., Hoke, G.D., Fosdick, J.C. & Wittmann, H. (2016) Reconciling tectonic shortening, sedimentation and spatial patterns of erosion from 10Be paleo‐erosion rates in the Argentine Precordillera. Earth Planet. Sci. Lett., 450, 173–185.
    [Google Scholar]
  99. Wagner, G.A., Gleadow, A. & Fitzgerald, P.G. (1989) The significance of the partial annealing zone in apatite fission‐track analysis: projected track length measurements and uplift chronology of the Transantarctic Mountains. Chemical Geology: Isotope Geoscience Section, 79, 295–305.
    [Google Scholar]
  100. Xie, X. & Heller, P.L. (2009) Plate tectonics and basin subsidence history. Geol. Soc. Am. Bull., 121, 55–64.
    [Google Scholar]
  101. Yáñez, G.A., Ranero, C.R., von Huene, R. & Díaz, J. (2001) Magnetic anomaly interpretation across the southern central Andes (32°‐34°S): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. Journal of Geophysical Research: Solid Earth, 106, 6325–6345.
    [Google Scholar]
  102. Zapata, T.R. & Allmendinger, R.W. (1996a) Thrust‐Front Zone of the Precordillera, Argentina: a Thick‐Skinned Triangle Zone. AAPG Bulletin, 80(3), 359–361.
    [Google Scholar]
  103. Zapata, T.R. & Allmendinger, R.W. (1996b) Growth stratal records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina. Tectonics, 15, 1065–1083.
    [Google Scholar]
  104. Zaun, P.E. & Wagner, G.A. (1985) Fission‐track stability in zircons under geological conditions. Nuclear Tracks, 10(3), 303–307.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12265
Loading
/content/journals/10.1111/bre.12265
Loading

Data & Media loading...

Supplements

Backstrip inputs.

PDF

Detrital zircon data.

PDF

Geochronology and thermochronology extended methods.

WORD
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error