1887
Volume 30, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Recent subsalt petroleum discoveries associated with rifted‐margin salt basins have piqued interest in the presalt geology of the Gulf of Mexico margin. Available subsurface data does not uniquely constrain the subsalt geometry, so creating an interpretation of the crustal architecture requires the application of geological models for crustal extension and breakup. However, published interpretations of the nature of the transition from continental rifting to seafloor spreading range from magma‐rich to magma‐poor. To address this uncertainty, we present 2D forward kinematic models for crustal configurations generated by diverse models (symmetric extension, depth‐dependent extension, and volcanic extension). Through a series of conceptual balanced cross‐sections grounded in a ~600 km 2D seismic line from the NE Gulf of Mexico, we demonstrate the implications of each model for the limit of oceanic crust, basement morphology, crustal architecture, and hydrocarbon prospectivity. We discuss evidence for the dominant crustal processes, including geodynamic factors and structural and stratigraphic observations. Based on our observations and the geologic history, we favour an asymmetric, magma‐poor to ‐intermediate margin interpretation for the NE Gulf of Mexico, but suggest that the degree of volcanic input and width of the ocean‐continent transition zone may vary along strike. The along‐strike variability highlights the importance of understanding all potential presalt crustal configurations, their key features, and their implications. With increased data availability on the presalt geology in the Gulf of Mexico the relevance of these scenarios can be assessed, allowing development of comprehensive geodynamic and tectonic models of the margin and consideration of petroleum system elements in the presalt sequence.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12299
2018-06-10
2024-04-19
Loading full text...

Full text loading...

References

  1. Ajay, K. K., Chaubey, A. K., Krishna, K. S., Rao, D. G., & Sar, D. (2010). Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin. Journal of Earth System Science, 119(6), 803–813. https://doi.org/10.1007/s12040-010-0061-2
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2004). Basin Analysis: Principles and Applications, 2nd ed. Oxford, UK: Blackwell Publishing Ltd.
    [Google Scholar]
  3. Allen, J., & Beaumont, C. (2016). Continental margin syn‐rift salt tectonics at intermediate width margins. Basin Research, 28(5), 598–633. https://doi.org/10.1111/bre.12123
    [Google Scholar]
  4. Augustin, N., Devey, C. W., Van Der Zwan, F. M., Feldens, P., Tominaga, M., Bantan, R. A., & Kwasnitschka, T. (2014). The rifting to spreading transition in the Red Sea. Earth and Planetary Science Letters, 395, 217–230. https://doi.org/10.1016/j.epsl.2014.03.047
    [Google Scholar]
  5. Bown, J. W., & White, R. S. (1995). Effect of finite extension rate on melt generation at rifted continental margins. Journal of Geophysical Research: Solid Earth, 100(B9), 18011–18029. https://doi.org/10.1029/94JB01478
    [Google Scholar]
  6. Camerlo, R. H., & Benson, E. F. (2006). Geometric and seismic interpretation of the Perdido fold belt: Northwestern deep‐water Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 90(3), 363–386. https://doi.org/10.1306/10120505003
    [Google Scholar]
  7. Christeson, G. L., Van Avendonk, H. J. A., Norton, I. O., Snedden, J. W., Eddy, D. R., Karner, G. D., & Johnson, C. A. (2014). Deep crustal structure in the eastern Gulf of Mexico. Journal of Geophysical Research: Solid Earth, 119(9), 6782–6801. https://doi.org/10.1002/2014JB011045
    [Google Scholar]
  8. Coffin, M. F., & Eldholm, O. (1994). Large igneous provinces: Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32(1), 1. https://doi.org/10.1029/93RG02508
    [Google Scholar]
  9. Davison, I., Anderson, L., & Nuttall, P. (2012). Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. Geological Society, London, Special Publication, 363(1), 159–174, https://doi.org/10.1144/sp363.8
    [Google Scholar]
  10. Detrick, R., Collins, J., Stephen, R., & Swift, S. (1994). In situ evidence for the nature of the seismic layer 2/3 boundary in oceanic crust. Nature, 370(6487), 288–290. https://doi.org/10.1038/370288a0
    [Google Scholar]
  11. Dick, H. J. B., Lin, J., & Schouten, H. (2003). An ultraslow‐spreading class of ocean ridge. Nature, 426(6965), 405–412. https://doi.org/10.1038/nature02128
    [Google Scholar]
  12. Eddy, D. R., Van Avendonk, H. J. A., Christeson, G. L., Norton, I. O., Karner, G. D., Johnson, C. A., & Snedden, J. W. (2014). Deep crustal structure of the northeastern Gulf of Mexico: Implications for rift evolution and seafloor spreading. Journal of Geophysical Research: Solid Earth, 119(9), 6802–6822. https://doi.org/10.1002/2014JB011311
    [Google Scholar]
  13. Ewing, T. (1991). Structural framework. In A.Salvador (Ed.), The Gulf of Mexico Basin, The Geology of North America, Vol. J (pp. 31–52). Boulder CO: Geological Society of America.
    [Google Scholar]
  14. Galloway, W. E. (2008). Depositional Evolution of the Gulf of Mexico Sedimentary Basin. In A. D.Miall & K. J.Hsu (Eds.) Sedimentary basins of the World: Sedimentary basins of the United States and Canada (vol. 5, pp. 505–549). Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  15. Geoffroy, L. (2005). Volcanic passive margins. Comptes Rendus Geoscience, 337(16), 1395–1408. https://doi.org/10.1016/J.CRTE.2005.10.006
    [Google Scholar]
  16. Hammes, U., Hamlin, H. S., & Ewing, T. E. (2011). Geologic analysis of the Upper Jurassic Haynesville Shale in east Texas and west Louisiana. American Association of Petroleum Geologists Bulletin, 95(10), 1643–1666. https://doi.org/10.1306/02141110128
    [Google Scholar]
  17. Hantschel, T., & Kauerauf, A. I. (2009). Fundamentals of Basin and Petroleum Systems Modeling. Berlin, Heidelberg: Springer‐Verlag (Heidelberg).
    [Google Scholar]
  18. Hudec, M. R., Jackson, M. P. A., & Peel, F. J. (2013a). Influence of deep Louann structure on the evolution of the northern Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 97(10), 1711–1735. https://doi.org/10.1306/04011312074
    [Google Scholar]
  19. Hudec, M. R., Norton, I. O., Jackson, M. P. A., & Peel, F. J. (2013b). Jurassic evolution of the Gulf of Mexico salt basin. American Association of Petroleum Geologists Bulletin, 97(10), 1683–1710. https://doi.org/10.1306/04011312073
    [Google Scholar]
  20. Huismans, R. S., & Beaumont, C. (2003). Symmetric and asymmetric lithospheric extension: Relative effects of frictional‐plastic and viscous strain softening. Journal of Geophysical Research: Solid Earth, 108(B10), https://doi.org/10.1029/2002JB002026
    [Google Scholar]
  21. Huismans, R., & Beaumont, C. (2011). Depth‐dependent extension, two‐stage breakup and cratonic underplating at rifted margins. Nature, 473(7345), 74–78. https://doi.org/10.1038/nature09988
    [Google Scholar]
  22. Imbert, P. (2005). The Mesozoic opening of the Gulf of Mexico: Part 1, Evidence for oceanic accretion during and after salt deposition. In 25th Annual Gulf Coast Section‐SEPM Foundation Bob F. Perkins Research Conference (vol. 25, pp. 1119–1150). Houston, TX.
  23. Imbert, P., & Philippe, Y. (2005). The Mesozoic opening of the Gulf of Mexico: Part 2. Integrating seismic and magnetic data into a general opening model. In 25th Annual Gulf Coast Section‐SEPM Foundation Bob F. Perkins Research Conference (vol. 25, pp. 1151–1189). Houston, TX.
  24. Jackson, M. P. A., Cramez, C., & Fonck, J.‐M. (2000). Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: Implications for salt tectonics and source rocks. Marine and Petroleum Geology, 17(4), 477–498. https://doi.org/10.1016/S0264-8172(00)00006-4
    [Google Scholar]
  25. Jackson, M. P. A., & Vendeville, B. C. (1994). Regional extension as a geologic trigger for diapirism. Geological Society of America Bulletin, 106(1), 57–73. https://doi.org/10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2
    [Google Scholar]
  26. Klimke, J., Franke, D., Gaedicke, C., Schreckenberger, B., Schnabel, M., Stollhofen, H., Rose, J., Chaheire, M. (2016). How to identify oceanic crust—Evidence for a complex break‐up in the Mozambique Channel, off East Africa. Tectonophysics, 693, 436–452. https://doi.org/10.1016/j.tecto.2015.10.012
    [Google Scholar]
  27. Lavier, L. L., & Manatschal, G. (2006). A mechanism to thin the continental lithosphere at magma‐poor margins. Nature, 440(7082), 324–328. https://doi.org/10.1038/nature04608
    [Google Scholar]
  28. Lizarralde, D., Axen, G. J., Brown, H. E., Fletcher, J. M., González‐Fernández, A., Harding, A. J., Holbrook, W. S., Kent, G. M., Paramo, P., Sutherland, F., Umhoefer, P. J. (2007). Variation in styles of rifting in the Gulf of California. Nature, 448(7152), 466–469. https://doi.org/10.1038/nature06035
    [Google Scholar]
  29. Makris, J., & Ginzburg, A. (1987). The Afar Depression: Transition between continental rifting and sea‐floor spreading. Tectonophysics, 141(1–3), 199–214. https://doi.org/10.1016/0040-1951(87)90186-7
    [Google Scholar]
  30. Manatschal, G. (2004). New models for evolution of magma‐poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences (Geol Rundsch), 93, 432–466. https://doi.org/10.1007/s00531-004-0394-7
    [Google Scholar]
  31. Marton, G., & Buffler, R. T. (1994). Jurassic reconstruction of the Gulf of Mexico Basin. International Geology Review, 36(6), 545–586. https://doi.org/10.1080/00206819409465475
    [Google Scholar]
  32. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1), 25–32. https://doi.org/10.1016/0012-821X(78)90071-7
    [Google Scholar]
  33. McKenzie, D., & Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3), 625–679. https://doi.org/10.1093/petrology/29.3.625
    [Google Scholar]
  34. Miranda‐Peralta, I. L. R., Cardenas‐Alvarado, A., Maldonado‐Villalon, R., Reyes‐Tovar, E., Morales, J. R., Williams‐Rojas, C., & Pemex (2014). Pre‐salt hypothetical play in deepwater Gulf of Mexico. Ingeniería Petrolera, 54(5), 256–266.
    [Google Scholar]
  35. Mohn, G., Karner, G. D., Manatschal, G., & Johnson, C. A. (2015). Structural and stratigraphic evolution of the Iberia–Newfoundland hyper‐extended rifted margin: A quantitative modelling approach. Geological Society, London, Special Publication, 413(1), 53–89, https://doi.org/10.1144/sp413.9
    [Google Scholar]
  36. Mohriak, W. (2014). Birth and Development of Continental Margin Basins: Analogies from the South Atlantic, North Atlantic, and the Red Sea. AAPG Search Discov. Artic. #41502.
  37. Mohriak, W. (2015). Pre‐Salt Carbonate Reservoirs in the South Atlantic and World‐wide Analogs, AAPG Search Discov. Artic. #51086.
  38. Morgan, P. (1982). Heat flow in Rift Zones. In G.Palmason (Ed.), Continental and Oceanic Rifts (pp. 107–122). Washington, DC: American Geophysical Union.
    [Google Scholar]
  39. Mutter, J. C., Talwani, M., & Stoffa, P. L. (1982). Origin of seaward‐dipping reflectors in oceanic crust off the Norwegian margin by “subaerial sea‐floor spreading”. Geology, 10(7), 353–357. https://doi.org/10.1130/0091-7613(1982)10<353:OOSRIO>2.0.CO;2
    [Google Scholar]
  40. Norton, I. O., Carruthers, D. T., & Hudec, M. R. (2016). Rift to drift transition in the South Atlantic salt basins: A new flavor of oceanic crust. Geology, 44(1), 55–58. https://doi.org/10.1130/G37265.1
    [Google Scholar]
  41. Nunn, J. A. (1990). Relaxation of continental lithosphere: An explanation for Late Cretaceous reactivation of the Sabine Uplift of Louisiana‐Texas. Tectonics, 9(2), 341–359. https://doi.org/10.1029/TC009i002p00341
    [Google Scholar]
  42. Oh, J., Austin, J. A., Phillips, J. D., Coffin, M. F., & Stoffa, P. L. (1995). Seaward‐dipping reflectors offshore the southeastern United States: Seismic evidence for extensive volcanism accompanying sequential formation of the Carolina trough and Blake Plateau basin. Geology23(1), 9–12.
    [Google Scholar]
  43. Pascoe, R., Nuttall, P., Dunbar, D., & Bird, D. (2016). Constraints on the timing of continental rifting and oceanic spreading for the Mesozoic Gulf of Mexico Basin. In N. C.Lowery , C. M.Snedden & J. W.Rosen (Eds.), 35th Gulf Coast Section‐SEPM Foundation Perkins‐Rosen Research Conference (vol. 35, pp. 81–122). Houston, TX.
    [Google Scholar]
  44. Peel, F. J., Travis, C. J., & Hossack, J. R. (1995). Genetic structural provinces and salt tectonics of the Cenozoic Offshore U.S. Gulf of Mexico: A Preliminary Analysis. In M. P. A.Jackson , D. G.Roberts & S.Snelson (Eds.), Salt tectonics: A global perspective: AAPG Memoir 65 (pp. 153–175). Tulsa, OK: American Association of Petroleum Geology.
    [Google Scholar]
  45. Pérez‐Gussinyé, M., & Reston, T. J. (2001). Rheological evolution during extension at nonvolcanic rifted margins: Onset of serpentinization and development of detachments leading to continental breakup. Journal of Geophysical Research: Solid Earth, 106(B3), 3961–3975. https://doi.org/10.1029/2000JB900325
    [Google Scholar]
  46. Péron‐Pinvidic, G., & Manatschal, G. (2009). The final rifting evolution at deep magma‐poor passive margins from Iberia‐Newfoundland: A new point of view. International Journal of Earth Sciences, 98, 1581–1597. https://doi.org/10.1007/s00531-008-0337-9
    [Google Scholar]
  47. Péron‐Pinvidic, G., Manatschal, G., Masini, E., Sutra, E., Flament, J. M., Haupert, I., & Unternehr, P. (2017). Unravelling the along‐strike variability of the Angola–Gabon rifted margin: A mapping approach. Geological Society London, Special Publications, 438(1), 49–76, https://doi.org/10.1144/sp438.1
    [Google Scholar]
  48. Péron‐Pinvidic, G., Manatschal, G., Minshull, T. A., & Sawyer, D. S. (2007). Tectonosedimentary evolution of the deep Iberia‐Newfoundland margins: Evidence for a complex breakup history. Tectonics, 26(2), https://doi.org/10.1029/2006TC001970
    [Google Scholar]
  49. Pindell, J., & Dewey, J. F. (1982). Permo‐Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics, 1(2), 179–211. https://doi.org/10.1029/TC001i002p00179
    [Google Scholar]
  50. Pindell, J., Graham, R., & Horn, B. (2014). Rapid outer marginal collapse at the rift to drift transition of passive margin evolution, with a Gulf of Mexico case study. Basin Research, 26(6), 701–725. https://doi.org/10.1111/bre.12059
    [Google Scholar]
  51. Pindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. In K. H.James , M. A.Lorente & J. L.Pindell (Eds.), The Origin and Evolution of the Caribbean Plate, Geological Society, London, Special Publications (vol. 328, pp. 1–55). London, UK.
    [Google Scholar]
  52. Pindell, J., Kennan, L., Stanek, K. P., Maresch, W. V., & Draper, G. (2006). Foundations of Gulf of Mexico and Caribbean evolution: Eight controversies resolved. Geologica Acta, 4(1–2), 303–341. https://doi.org/10.1144/SP328.1
    [Google Scholar]
  53. Quirk, D. G., Shakerley, A., & Howe, M. J. (2014). A mechanism for construction of volcanic rifted margins during continental breakup. Geology, 42(12), 1079–1082. https://doi.org/10.1130/G35974.1
    [Google Scholar]
  54. Rowan, M. G. (2014). Passive‐margin salt basins: Hyperextension, evaporite deposition, and salt tectonics. Basin Research, 26(1), 154–182. https://doi.org/10.1111/bre.12043
    [Google Scholar]
  55. Rowan, M. G. (2018). The South Atlantic and Gulf of Mexico salt basins: Crustal thinning, subsidence and accommodation for salt and presalt strata. In K. R.McClay and J. A.Hammerstein (Eds.), The Geological Society Special Publications: Passive margins: Tectonics, sedimentation and magmatism (vol. 476, pp. 31). London, UK: The Geological Society of London.
    [Google Scholar]
  56. Rowan, M. G., Trudgill, B. D., & Carl Fiduk, J. (2000). Deep‐water, salt‐cored foldbelts: Lessons from the Mississippi Fan and Perdido Foldbelts, Northern Gulf of Mexico. In W.Mohriak & M.Talwani (Eds.), Atlantic Rifts and continental margins: American geophysical union geophysical monograph 115 (pp. 173–191). Washington, DC: American Geophysical Union.
    [Google Scholar]
  57. Salvador, A. (1987). Late Triassic‐Jurassic Paleogeography and Origin of Gulf of Mexico Basin. American Association of Petroleum Geologists Bulletin, 71(4), 419–451.
    [Google Scholar]
  58. Salvador, A. (Ed.) (1991). The Gulf of Mexico Basin, The Geology of North America, v. J. Boulder, CO: Geological Society of America.
    [Google Scholar]
  59. Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., & Francis, R. (2014). Marine geophysics. New global marine gravity model from CryoSat‐2 and Jason‐1 reveals buried tectonic structure. Science, 346, 65–67. https://doi.org/10.1126/science.1258213
    [Google Scholar]
  60. Sawyer, D. S., Buffler, R. T., & Pilger, R. H.Jr (1991). The crust under the Gulf of Mexico Basin. In A.Salvador (Ed.), The Gulf of Mexico Basin, The Geology of North America, Vol. J (pp. 53–72). Boulder CO: Geological Society of America.
    [Google Scholar]
  61. Skogseid, J., Planke, S., Faleide, J. I., Pedersen, T., Eldholm, O., & Neverdal, F. (2000). NE Atlantic continental rifting and volcanic margin formation. Geological Society London, Special Publication, 167(1), 295–326. https://doi.org/10.1144/gsl.sp.2000.167.01.12
    [Google Scholar]
  62. Svartman Dias, A. E., Lavier, L. L., & Hayman, N. W. (2015). Conjugate rifted margins width and asymmetry: The interplay between lithospheric strength and thermomechanical processes. Journal of Geophysical Research: Solid Earth, 120, 8672–8700. https://doi.org/10.1002/2015JB012074
    [Google Scholar]
  63. Taylor, B., Goodliffe, A. M., & Martinez, F. (1999). How continents break up: Insights from Papua New Guinea. Journal of Geophysical Research: Solid Earth, 104(B4), 7497–7512. https://doi.org/10.1029/1998JB900115
    [Google Scholar]
  64. Taylor, B., Goodliffe, A., Martiniez, F., & Hey, R. (1995). Continental rifting and initial sea‐floor spreading in the Woodlark basin. Nature, 374(6522), 534.
    [Google Scholar]
  65. Unternehr, P., Péron‐Pinvidic, G., Manatschal, G., & Sutra, E. (2010). Hyper‐extended crust in the South Atlantic: In search of a model. Petroleum Geoscience, 16(3), 207–215. https://doi.org/10.1144/1354-079309-904
    [Google Scholar]
  66. Van Avendonk, H. J. A., Christeson, G. L., Norton, I. O., & Eddy, D. R. (2015). Continental rifting and sediment infill in the northwestern Gulf of Mexico. Geology, 43(7), 631–634. https://doi.org/10.1130/G36798.1
    [Google Scholar]
  67. Wernicke, B. (1981). Low‐angle normal faults in the Basin and Range Province; nappe tectonics in an extending orogen. Nature, 291(5817), 645–648.
    [Google Scholar]
  68. Whitmarsh, R. B., Manatschal, G., & Minshull, T. A. (2001). Evolution of magma‐poor continental margins from rifting to seafloor spreading. Nature, 413(6852), 150–154. https://doi.org/10.1038/35093085
    [Google Scholar]
  69. Winker, C. D. (2007). Paleogene stratigraphic revision and tectonic implications, Gulf of Mexico abyssal plain. In L.Kennan , J.Pindell & N. C.Rosen (Eds.), 27th Annual Gulf Coast Section‐SEPM Foundation Bob F. Perkins Research Conference (pp. 376–396). Houston, TX.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12299
Loading
/content/journals/10.1111/bre.12299
Loading

Data & Media loading...

Supplements

 

WORD

 

  • Article Type: Research Article
Keyword(s): extension; geodynamics; Gulf of Mexico; passive margins; rift basins; salt basin; structure

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error