1887
Volume 30, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Previous studies on the Lower‐Middle Jurassic Cuyo Group in the southern Neuquén Basin, Argentina, have discussed evidence for pre‐ and syn‐depositional structural inversion during pre‐Andean shortening. While the Cuyo Group sequence stratigraphic and facies framework are well understood, the effects of structural inversion and progressive postrift thermal subsidence on sediment provenance and dispersal, as well as the timing and magnitude of deformation during and after Cuyo Group deposition, remain poorly constrained. The Cuyo Group comprises both reservoir‐quality fluvial to deep‐marine siliciclastic deposits and a petroleum source‐rock. Thus, the temporal relationship between the onset of deformation and sediment dispersal are crucial aspects for an improved understanding of both the basin evolution and petroleum system. This study presents new detrital zircon (U‐Th)/(He‐Pb) double dating from the Los Molles and Lajas Formations of the Cuyo Group in the southern area of SW Zapala to evaluate the influence of early rift inversion on sediment routing, provenance, and palaeogeography, and to provide crucial chronostratigraphic constraints. The youngest concordant Jurassic detrital zircon (DZ) U‐Pb and He ages from the Lajas and Los Molles Formations in Lohan Mahuida and La Jardinera areas suggest a late Middle Jurassic depositional age. The DZ U‐Pb provenance analysis confirms that both formations are part of the same Middle Jurassic shelf margin and were both sourced from the Choiyoi basement, Late Triassic to Middle Jurassic Andean magmatic arc and pre‐Cuyo Group strata. The detrital He (DZHe) ages provide additional provenance constraints by recording three discrete cooling events, (1) early‐Late Triassic, (2) early‐Early Jurassic, and (3) Middle‐Late Jurassic, documenting tectonically driven exhumation during rifting and contractional stages prior to and during early Neuquén basin evolution. Triassic‐Jurassic He cooling ages of zircons derived from the Choiyoi Group document the existence of pre‐Cuyo Pangean extensional structures and basins in the source area. Furthermore, the abundance of rapidly cool DZHe ages requires rapid exhumation of both Choiyoi and Carboniferous basement. All of this evidence suggests that structural inversion in the Huincul ridge region started in the Middle Jurassic, earlier than previously proposed. Hence, this challenges conventional Cuyo Group tectono‐depositional models that advocated postrift thermal sagging as the primary control on subsidence and deposition. The occurrence of first‐cycle volcanic (U‐Th)/(He‐Pb) ages implies that the Cuyo Group burial never reached depths >4–5 kilometres. Exhumation to shallower crustal depths was spatially partitioned and driven by Cenozoic Andean shortening as constrained by AHe ages.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12304
2018-07-16
2024-04-23
Loading full text...

Full text loading...

References

  1. Álvarez, J., Mpodozis, C., Arriagada, C., Astini, R., Morata, D., Salazar, E., … Vervoort, J. (2011). Detrital zircons from late Paleozoic accretionary complexes in north‐central Chile (28–32 S): Possible fingerprints of the Chilenia terrane. Journal of South American Earth Sciences, 32(4), 460–476.
    [Google Scholar]
  2. Barredo, S., Chemale, F., Marsicano, C., Ávila, J. N., Ottone, E. G., & Ramos, V. A. (2012). Tectono‐sequence stratigraphy and U‐Pb zircon ages of the Rincón Blanco Depocenter, northern Cuyo Rift. Argentina. Gondwana Research, 21(2–3), 624–636.
    [Google Scholar]
  3. Basei, M. A., Brito Neves, B., Varela, R., Teixeira, W., Siga, O.Jr, Sato, A. M., & Cingolani, C. (1999). Isotopic dating on the crystalline basement rocks of the Bariloche region, Río Negro, Argentina, in Proceedings South American Symposium on Isotope Geology (p. 15–18).
    [Google Scholar]
  4. Chernicoff, C. J., & Zappettini, E. O. (2004). Geophysical Evidence for Terrane Boundaries in South‐Central Argentina. Gondwana Research, 7(4), 1105–1116.
    [Google Scholar]
  5. Dewey, J. F. (1988). Extensional collapse of orogens. Tectonics, 7(6), 1123–1139.
    [Google Scholar]
  6. Dickinson, W. R., & Gehrels, G. E. (2008). U‐Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest Laurentia. Journal of Sedimentary Research, 78(12), 745–764.
    [Google Scholar]
  7. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1–2), 115–125.
    [Google Scholar]
  8. Farley, K. A. (2000). Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatit. Journal of Geophysical Research105 (B2), 2903–2914.
    [Google Scholar]
  9. Farley, K. A. (2002). (U‐Th)/He Dating: Techniques, Calibrations, and Applications. In D.Porcelli , C. J.Ballentine , & R.Wieler (Eds.), Noble Gases in Geochemistry and Cosmochemistry, Volume 47: Washington (pp. 819–844). DC: Geochemical Society & Mineralogical Society of America.
    [Google Scholar]
  10. Farley, K. A. (2007). He diffusion systematics in minerals: Evidence from synthetic monazite and zircon structure phosphates. Geochimica et Cosmochimica Acta, 71(16), 4015–4024.
    [Google Scholar]
  11. Farley, K. A., & Stockli, D. F. (2002). (U‐Th)/He Dating of Phosphates: Apatite. Monazite, and Xenotime: Reviews in mineralogy and geochemistry, 48(1), 559–577.
    [Google Scholar]
  12. Filleaudeau, P. Y., Mouthereau, F., & Pik, R. (2012). Thermo‐tectonic evolution of the south‐central Pyrenees from rifting to orogeny: insights from detrital zircon U/Pb and (U‐Th)/He thermochronometry. Basin Research, 24(4), 401–417.
    [Google Scholar]
  13. Fosdick, J. C., Grove, M., Graham, S. A., Hourigan, J. K., Lovera, O., & Romans, B. W. (2015). Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin. Patagonian Andes: Basin Research, 27(4), 546–572.
    [Google Scholar]
  14. Franzese, J. R., & Spalletti, L. A. (2001). Late Triassic–early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre‐break‐up rifting. Journal of South American Earth Sciences, 14(3), 257–270.
    [Google Scholar]
  15. Franzese, J., Spalletti, L., Pérez, I. G., & Macdonald, D. (2003). Tectonic and paleoenvironmental evolution of Mesozoic sedimentary basins along the Andean foothills of Argentina (32°–54°S). Journal of South American Earth Sciences, 16(1), 81–90.
    [Google Scholar]
  16. Franzese, J. R., Veiga, G. D., Schwarz, E., & Gomez‐Perez, I. (2006). Tectonostratigraphic evolution of a Mesozoic graben border system: the Chachil depocentre, southern Neuquen Basin, Argentina. Journal of the Geological Society, 163, 707–721.
    [Google Scholar]
  17. Fedo, C. M., Sircombe, K. N., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53(1), 277–303. https://doi.org/10.2113/0530277
    [Google Scholar]
  18. Gehrels, G. E. (2011). Detrital Zircon U‐Pb Geochronology: Current Methods and New Opportunities. In C.Busby & A.Azor (Eds.) Tectonics of Sedimentary Basins: Recent Advances (pp. 45–62). Oxford, UK: John Wiley & Sons Ltd.
    [Google Scholar]
  19. Gehrels, G. (2014). Detrital Zircon U‐Pb Geochronology Applied to Tectonics. Annual Review of Earth and Planetary Sciences, 42(1), 127–149.
    [Google Scholar]
  20. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation‐multicollector‐inductively coupled plasma‐mass spectrometry. Geochemistry Geophysics Geosystems, 9 (3), 1–13.
    [Google Scholar]
  21. von Gosen, W. (1995). Polyphase structural evolution of the southwestern Argentine Precordillera. Journal of South American Earth Sciences, 8(3–4), 377–404.
    [Google Scholar]
  22. von Gosen, W. (2002). Polyphase structural evolution in the northeastern segment of the North Patagonian Massif (southern Argentina). Journal of South American Earth Sciences, 15(6), 591–623.
    [Google Scholar]
  23. Gregori, D. A., Kostadinoff, J., Strazzere, L., & Raniolo, A. (2008). Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia. Argentina. Gondwana Research, 14(3), 429–450.
    [Google Scholar]
  24. Grimaldi, G. O., & Dorobek, S. L. (2011). Fault framework and kinematic evolution of inversion structures: Natural examples from the Neuquén Basin. Argentina. AAPG Bulletin, 95(1), 27–60.
    [Google Scholar]
  25. Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., & Giester, G. (2013). Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U‐Th)/He thermochronology. American Journal of Science, 313(3), 145–198.
    [Google Scholar]
  26. Guynn, J., & Gehrels, G. (2010). Comparison of detrital zircon age distributions using the KS test: Arizona LaserChron Center. Tucson: University of Arizona.
    [Google Scholar]
  27. Horton, B. K., Fuentes, F., Boll, A., Starck, D., Ramírez, S. G., & Stockli, D. F. (2016). Andean stratigraphic record of the transition from backarc extension to orogenic shortening: A case study from the northern Neuquén Basin, Argentina. Journal of South American Earth Sciences71, 17–40.
    [Google Scholar]
  28. Howell, J. A., Schwarz, E., Spalletti, L. A., & Veiga, G. D. (2005). The Neuquen Basin: an overview: Geological Society. London, Special Publications, 252(1), 1–14.
    [Google Scholar]
  29. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U‐Pb zircon geochronology. Chemical Geology, 211(1), 47–69.
    [Google Scholar]
  30. Kamo, S. L., & Riccardi, A. C. (2009). A new U‐Pb zircon age for an ash layer at the Bathonian‐Callovian boundary. Argentina. GFF, 131(1–2), 177–182.
    [Google Scholar]
  31. Kay, S. M., Ramos, A., Mpodozis, C., & Sruoga, P. (1989). Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: Analogy to the Middle Proterozoic in North America?Geology, 17 (4), 324–328.
    [Google Scholar]
  32. Kim, H. J., Mallea, M., Gutiérrez, R., & Malone, P. (2014). Exploración del Gr. Cuyo (Jurásico) en bloques maduros de la Dorsal de Huincul – Puesto Touquet y el porvenir, Cuenca Neuquina: IX Congreso de Exploracion y Desarrollo de Hidrocarburos., II, p. 71‐93.
  33. Kurcinka, C. (2014). Sedimentology and facies architecture of the tide‐influenced, river‐dominated delta‐mouth bars in the lower Lajas Formation (Jurassic), Argentina, Ph.D. thesis, Queen's University Kingston, ON, Canada, 1–146.
  34. Legarreta, L., & Gulisano, C. (1989) Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior‐Terciario inferior). Cuencas sedimentarias argentinas, 6 (10), 221–243.
    [Google Scholar]
  35. Legarreta, L., & Uliana, M. A. (1996). The Jurassic succession in west‐central Argentina: stratal patterns, sequences and paleogeographic evolution: Palaeogeography. Palaeoclimatology, Palaeoecology, 120(3–4), 303–330.
    [Google Scholar]
  36. Ludwig, K. (2003). User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel, Kenneth R. Ludwig, 4.
  37. Martínez, A., & Giambiagi, L. (2010) Evolución petrológica y geoquímica del magmatismo bimodal Permo‐Triásico del Grupo Choiyoi en el cordón del Portillo, Mendoza, Argentina. Trabajos de geología, 30 (30), 432–451.
    [Google Scholar]
  38. Martinez, A. N., Rodriguez Blanco, L., & Ramos, V. A. (2006). Permo‐Triassic Magmatism of the Choiyoi Group in the Cordillera Frontal of Mendoza, Argentina: Geological Variations Associated to Changes in Paleo‐Benioff Zone. In Proceedings Backbone of the Americas ‐ Patagonia to Alaska, Mendoza, Argentina, 3 April 2006, Volume 2, Geological Society of America, p. 77.
    [Google Scholar]
  39. Morabito, E. G., Götze, H. J., & Ramos, V. A. (2011). Tertiary tectonics of the Patagonian Andes retro‐arc area between 38 15′ and 40 S latitude. Tectonophysics, 499(1–4), 1–21. https://doi.org/10.1016/j.tecto.2010.10.020
    [Google Scholar]
  40. Mosquera, A., & Ramos, V. A. (2006). Intraplate deformation in the Neuquén Embayment. In S. M.Kay & V. A.Ramos (Eds.), Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat), Volume 407, Geological Society of America, p. 97‐123.
    [Google Scholar]
  41. Naipauer, M., García Morabito, E., Marques, J. C., Tunik, M., Rojas Vera, E. A., Vujovich, G. I., … Ramos, V. A. (2012). Intraplate Late Jurassic deformation and exhumation in western central Argentina: Constraints from surface data and U‐Pb detrital zircon ages. Tectonophysics, 524–525, 59–75.
    [Google Scholar]
  42. Naipauer, M., Vujovich, G. I., Cingolani, C. A., & McClelland, W. C. (2010). Detrital zircon analysis from the Neoproterozoic‐Cambrian sedimentary cover (Cuyania terrane), Sierra de Pie de Palo, Argentina: Evidence of a rift and passive margin system?Journal of South American Earth Sciences, 29(2), 306–326.
    [Google Scholar]
  43. Painter, C. S., Carrapa, B., DeCelles, P. G., Gehrels, G. E., & Thomson, S. N. (2014). Exhumation of the North American Cordillera revealed by multi‐dating of Upper Jurassic–Upper Cretaceous foreland basin deposits. Geological Society of America Bulletin, B30999. 30991.
    [Google Scholar]
  44. Pángaro, F. (2006). Tectonic Inversion of the Huincul High, Neuquen Basin, Argentina: An Endangered Species. Stratigraphic evidences of It's Disappearance.
  45. Pángaro, F., Pereira, D., & Micucci, E. (2009). El sinrift de la dorsal de Huincul. Cuenca Neuquina: evolucióny control sobre la estratigrafía y estructura del área: Revista de la Asociación Geológica Argentina, 65(2), 265–277.
    [Google Scholar]
  46. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518.
    [Google Scholar]
  47. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A Novel Approach to Laser Ablation ICP‐MS U‐Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research, 36(3), 247–270.
    [Google Scholar]
  48. Press, W. H., & Teukolsky, S. A. (1988). Kolmogorov‐Smirnov Test for Two‐Dimensional Data: How to tell whether a set of (x, y) data paints are consistent with a particular probability distribution, or with another data set. Computers in Physics, 2(4), 74–77.
    [Google Scholar]
  49. Rahl, J. M., Reiners, P. W., Campbell, I. H., Nicolescu, S., & Allen, C. M. (2003). Combined single‐grain (U‐Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone. Utah. Geology, 31(9), 761–764.
    [Google Scholar]
  50. Ramos, V. A. (2000). Evolución tectónica de la Argentina. In R.Caminos (Ed.), Geología Argentina (Vol. 29, pp. 715–784). Buenos Aires: Instituto de Geología y Recursos Minerales.
    [Google Scholar]
  51. Ramos, V. A., Cegarra, M., & Cristallini, E. (1996). Cenozoic tectonics of the High Andes of west‐central Argentina (30–36°S latitude). Tectonophysics, 259(1–3), 185–200.
    [Google Scholar]
  52. Ramos, V. A., Jordan, T. E., Allmendinger, R. W., Mpodozis, C., Kay, S. M., Cortés, J. M., & Palma, M. (1986). Paleozoic terranes of the central Argentine‐Chilean Andes. Tectonics, 5(6), 855–880.
    [Google Scholar]
  53. Ramos, V. A., & Kay, S. M. (1991). Triassic rifting and associated basalts in the Cuyo basin, central Argentina. In R. S.Harmon , & C. W.Rapela (Eds.), Andean Magmatism and Its Tectonic Setting. Geological Society of America.
    [Google Scholar]
  54. Rapela, C. W., & Kay, S. M. (1988). Late Paleozoic to Recent magmatic evolution of northern Patagonia. Episodes, 11(3), 175–182.
    [Google Scholar]
  55. Reiners, P. W. (2005). Zircon (U‐Th)/He Thermochronometry. In P. W.Reiners & A. E.Ehlers (Eds.), Low‐Temperature Thermochronology: Techniques, Interpretations, and Applications, Volume 58, Mineralogical Society of America & Geochemical Society, pp. 151–179.
    [Google Scholar]
  56. Reiners, P. W., Campbell, I. H., Nicolescu, S., Allen, C. M., Hourigan, J. K., Garver, J. I., … Cowan, D. S. (2005a). (U‐Th)/(He‐Pb) double dating of detrital zircons. American Journal of Science, 305(4), 259–311.
    [Google Scholar]
  57. Reiners, P. W., Ehlers, T. A., & Zeitler, P. K. (2005b). Past, Present, and Future of Thermochronology. In P. W.Reiners & A. E.Ehlers (Eds.), Low‐Temperature Thermochronology: Techniques, Interpretations, and Applications, Volume 58, Mineralogical Society of America & Geochemical Society, pp. 1–18.
    [Google Scholar]
  58. Reiners, P. W., & Farley, K. A. (2001). Influence of crystal size on apatite (U‐Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 188, 413–420.
    [Google Scholar]
  59. Reiners, P. W., Farley, K. A., & Hickes, H. J. (2002). He diffusion and (U‐Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349, 297–308.
    [Google Scholar]
  60. Riccardi, A. C. (1988). The Cretaceous system of southern south America, Geological Society of America.
    [Google Scholar]
  61. Riccardi, A. C., Damborenea, S. E., Manceñido, M. O., Baldoni, A., Ballent, S., Gasparini, Z., … Zavattieri, A. M. (1990a). Lower Jurassic of South America and Antarctic Peninsula. Newsletters on Stratigraphy, 21(2), 75–103.
    [Google Scholar]
  62. Riccardi, A. C., & Westermann, G. E. (1984). Amonitas y Estratigrafía del Aaleniano‐Bayociano de la Argentina. Con un apéndice micropaleontológico.
  63. Riccardi, A. C., Westermann, G. E. G., Damborenea, S. E., Baldoni, A. M., Ballent, S., Bonaparte, J. F., … Volkheimer, W. (1990b). Upper Jurassic of South America and Antarctic Peninsula. Newsletters on Stratigraphy, 21(2), 129–147.
    [Google Scholar]
  64. Riccardi, A. C., Westermann, G. E. G., Damborenea, S. E., Baldoni, A. M., Ballent, S., Bonaparte, J. F., … Volkheimer, W. (1990c). Middle Jurassic of South America and Antarctic Peninsula. Newsletters on Stratigraphy, 21(2), 105–128.
    [Google Scholar]
  65. Rossello, E., Massabie, A., López‐Gamundi, O., Cobbold, P., & Gapais, D. (1997). Late Paleozoic transpression in Buenos Aires and northeast Patagonia ranges, Argentina. Journal of South American Earth Sciences, 10(5), 389–402.
    [Google Scholar]
  66. Rossi, V. M., & Steel, R. J. (2016). The role of tidal, wave and river currents in the evolution of mixed‐energy deltas: Example from the Lajas Formation (Argentina): Sedimentology.
  67. Saylor, J. E., Stockli, D. F., Horton, B. K., Nie, J., & Mora, A. (2012). Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera. Colombia. Geological Society of America Bulletin, 124(5–6), 762–779.
    [Google Scholar]
  68. Shin, M. (2015). Architecture of coarse grained (conglomeratic) deep water lobes at the base of a sandstone dominated fan. Neuquén Basin, Argentina: Jurassic Los Molles Formation.
    [Google Scholar]
  69. Shuster, D. L., Farley, K. A., Sisterson, J. M., & Burnett, D. S. (2004). Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing proton‐induced 3He. Earth and Planetary Science Letters, 217, 19–32.
    [Google Scholar]
  70. Silvestro, J., & Zubiri, M. (2008). Convergencia oblicua: modelo estructural alternativo para la Dorsal Neuquina (39°S)‐Neuquén. Revista de la Asociación Geológica Argentina, 63 (1), 49–64.
    [Google Scholar]
  71. Spalletti, L. A., Fanning, C., & Rapela, C. W. (2008a). Dating the Triassic continental rift in the southern Andes: the Potrerillos Formation, Cuyo basin, Argentina. Geologica Acta: An International Earth Science Journal, 6 (3), 267–283.
    [Google Scholar]
  72. Spalletti, L. A., Queralt, I., Matheos, S. D., Colombo, F., & Maggi, J. (2008b). Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuquén Basin, western Argentina): Implications for provenance and tectonic setting. Journal of South American Earth Sciences, 25(4), 440–463.
    [Google Scholar]
  73. Spalletti, L. G., Veiga, G. D., & Schwarz, E. (2010). Facies and stratigraphic sequences of the Mesozoic Neuquén Basin (western Argentina): Continental to deep marine settings. In C. A.del Papa (Ed.), Field Excursion Guidebook, 18th International Sedimentological Congress (pp. 1–79). Mendoza, Argentina: International Association of Sedimentologists.
    [Google Scholar]
  74. Spencer, C. J., Kirkland, C. L., & Taylor, R. J. (2016). Strategies towards statistically robust interpretations of in situ U‐Pb zircon geochronology. Geoscience Frontiers, 7(4), 581–589.
    [Google Scholar]
  75. Stockli, D. F., & Stockli, L. (2013). Unlocking provenance secrets from single detrital zircons by U‐Pb and trace‐element depth‐profile laser‐ablation‐split‐stream analysis and (U‐Th)/He double dating Geological Society of America Volume 45: Denver, Colorado p. 744.
  76. Tankard, A. J., Ultiana, M. A., Welsink, H. J., Ramos, V. A., Turic, M., Milani, A. B., … Miller, R. M. (1995). Structural and tectonic controls of basin evolution in southwestern Gondwana during the Phanerozoic. In A. J.Tankard , R.Suarez Soruco & H. J.Welsink (Eds.), Petroleum Basins of South America (Vol. 62, pp. 5–52). Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  77. Tomezzoli, R. (2001). Further palaeomagnetic results from the Sierras Australes fold and thrust belt. Argentina. Geophysical Journal International, 147(2), 356–366.
    [Google Scholar]
  78. Tomezzoli, R. N., Rapalini, A. E., de Luchi, M. G. L., & Martínez Dopico, C. (2013). Further evidence of widespread Permian remagnetization in the North Patagonian massif. Argentina. Gondwana Research, 24(1), 192–202.
    [Google Scholar]
  79. Tudor, E. P. (2014). Facies variability in deep water channel‐to‐lobe transition zone: Jurassic Los Molles Formation, Neuquen Basin, Argentina.
  80. Uliana, M. A., Biddle, K. T., & Cerdan, J. (1989). Mesozoic Extension and the Formation of Argentine Sedimentary Basins. Chapter 39: Analogs. In A. J.Tankard , & H. R.Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic margins, Volume 46 (pp. 599–614). Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  81. Uliana, M. A., & Legarreta, L. (1993). Hydrocarbon Habitat in a Triassic‐to‐Cretaceous Sub‐Andean Setting: Neuquén Basin. Argentina. Journal of Petroleum Geology, 16(4), 397–420.
    [Google Scholar]
  82. Vann, N. K. (2013). Slope to basin‐floor evolution of channels to lobes, Jurassic Los Molles Formation, Neuquén Basin, Argentina.
  83. Vergani, G. D., Tankard, A. J., Belotti, H. J., & Welsink, H. J. (1995). Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. American Association of Petroleum Geologists, Memoi, 62, 383–402.
    [Google Scholar]
  84. Vermeesch, P. (2004). How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224(3–4), 441–451.
    [Google Scholar]
  85. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  86. Von Gosen, W., Buggisch, W., & Dimieri, L. (1990). Structural and metamorphic evolution of the Sierras Australes (Buenos Aires province/Argentina). Geologische Rundschau, 79(3), 797–821.
    [Google Scholar]
  87. Wolfe, M. R., & Stockli, D. F. (2010). Zircon (U‐Th)/He thermochronometry in the KTB drill hole. Germany, and its implications for bulk He diffusion kinetics in zircon: Earth and Planetary Science Letters, 295, 69–82.
    [Google Scholar]
  88. Zavala, C., & Riccardi, A. (1996). High‐Resolution Sequence Stratigraphy in the Middle Jurassic Cuyo Group, South Neuquén Basin, Argentina. In Proceedings GeoResearch Forum, Volume 1, Transtec Publications, pp. 295–303.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12304
Loading
/content/journals/10.1111/bre.12304
Loading

Data & Media loading...

Supplements

 

WORD

 

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error