1887
Volume 24, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Faults, fracture systems, weathering profiles and cover sediments of granitic basement in the rift shoulder of the Gulf of Suez Rift (Sinai, Egypt) are useful conceptual analogues for basement–cover reservoir fields. Outcrops demonstrate that fracture intensity peaks adjacent to major faults, and declines in damage zones that stretch to the background fracturing level over distances of 150 m. In the rift shoulder, smaller faults have damage zones that are 30 – 40 m wide with 1 – 5 m-wide fracture corridors. Faults show chemical alteration extending hundreds of metres into basement, with characteristics similar to saprolite in schists, mafic rocks and granitoids. Cover sandstones fill and drape top-basement relief, as recorded by metre-thick basal fluvial coarse sandstones, hosting kaolinite both as diagenetic pore fill and clastic grains. Overlying floodplain to marginal-marine deposits consist of mature quartz arenites.

Strategies for production of hydrocarbons or groundwater from basement–cover reservoir couplets should consider a layered system with: (i) deep tight basement of minimal porosity ( 1%) hosting producible fractures and faults in a plumbed system with potential thief zones; (ii) top-basement weathering profiles capping granitoids representing a volumetrically considerable reservoir; and (iii) draping cover sandstones showing good reservoir properties, and representing the most homogenous unit. Diagenetic modifications of saprolite, fault rocks and fractures potentially baffle recharge between layers.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-163
2017-11-23
2024-04-25
Loading full text...

Full text loading...

References

  1. Abu-Alam, T.S. & Stüwe, K.
    2009. Exhumation during oblique transpression: the Feiran–Solaf region, Egypt. Journal of Metamorphic Geology, 27, 439–459.
    [Google Scholar]
  2. Abu-Alam, T.S., Stüwe, K. & Hauzenberger, C.
    2010. Calc-silicates from Wadi Solaf region, Sinai, Egypt. Journal of African Earth Sciences, 58, 475–488.
    [Google Scholar]
  3. Aisharhan, A.S. & Salah, M.G.
    1997. Lithostratigraphy, sedimentology and hydrocarbon habitat of the Pre-Cenomanian Nubian Sandstone in the Gulf of Suez Oil Province, Egypt. GeoArabia, 2, 385–400.
    [Google Scholar]
  4. Akarish, A.I.M. & El-Gohary, A.M.
    2011. Provenance and source area weathering derived from the geochemistry of Pre-Cenomanian sandstones, East Sinai, Egypt. Journal of Applied Science, 11, 3070–3088.
    [Google Scholar]
  5. Allam, A.
    1989. The Paleozoic sandstones in Wadi Feiran–El Tor area, Sinai, Egypt. Journal of African Earth Sciences, 9, 49.
    [Google Scholar]
  6. Allen, J.R.L.
    1965. A review of the origin and characteristics of recent alluvial sediments. Sedimentology, 5, 89–191.
    [Google Scholar]
  7. Alsharhan, A.S. & Salah, M.G.
    1994. Geology and hydrocarbon habitat in a rift setting: southern Gulf of Suez, Egypt. Bulletin of Canadian Petroleum Geology, 42, 312–331.
    [Google Scholar]
  8. Baioumy, H.
    2014. Provenance of sedimentary kaolin deposits in Egypt: Evidences from the Pb, Sr and Nd isotopes. Journal of African Earth Sciences, 100, 532–540.
    [Google Scholar]
  9. Banks, E.W., Simmons, C.T. et al.
    2009. Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). Hydrogeology Journal, 17, 1969–1989.
    [Google Scholar]
  10. Bosworth, W.
    1995. A high-strain rift model for the southern Gulf of Suez (Egypt). In: Lambiase, J.J. (ed.) Hydrocarbon Habitat in Rift Basins. Geological Society, London, Special Publications, 80, 75–102, https://doi.org/10.1144/GSL.SP.1995.080.01.04
    [Google Scholar]
  11. Braathen, A., Osmundsen, P.T. & Gabrielsen, R.H.
    2004. Dynamic development of fault rocks in a crustal-scale detachment; an example from western Norway. Tectonics, 23, TC4010.
    [Google Scholar]
  12. Braathen, A., Abdel Fattah, M.M., Ogata, K., Olaussen, S. & Abdel-Gawad, G.
    2013. Basement fracturing and weathering in rift-shoulder fault blocks; a reservoir analogue from the Sinai Suez Rift (Egypt). In: Basement Highs on the NCS; A New Play Model. NGF Abstracts and Proceedings, 2, 6–15.
    [Google Scholar]
  13. Butt, C.R.M., Lintern, M.J. & Anand, R.R.
    2000. Evolution of regoliths and landscapes in deeply weathered terrain — implications for geochemical exploration. Ore Geology Reviews, 16, 167–183.
    [Google Scholar]
  14. Caine, J.S., Evans, J.P. & Forster, C.B.
    1996. Fault zone architecture and permeability structure. Geology, 24, 1025–1028.
    [Google Scholar]
  15. Childs, C., Manzocchi, T., Walsh, J.J., Bonson, G.B., Nicol, A. & Schopfer, M.P.J.
    2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31, 117–127.
    [Google Scholar]
  16. Clifton, H.E.
    2006. A reexamination of facies models for clastic shoreline. In: Walker, R.G. & Posamentier, H. (eds) Facies Model Revisited. SEPM (Society for Sedimentary Geology), Special Publications, 84, 293–337.
    [Google Scholar]
  17. Darwish, M. & El-Araby, A.M.
    1994. Petrography and Diagenetic Aspects of Some Siliciclastic Hydrocarbon Reservoirs in Relation to the Rifting of the Gulf of Suez. Egyptian Journal of Geology, 3, 25.
    [Google Scholar]
  18. Dixon, J.L., Heimsath, A.M. & Amundson, R.
    2009. The critical role of climate and saprolite weathering in landscape evolution. Earth Surface Processes and Landforms, 34, 1507–1521.
    [Google Scholar]
  19. El Araby, A. & Abdel Motelib, A.
    1999. Depositional facies of the Cambrian Araba Formation in Taba region, east Sinai, Egypt. Journal of African Earth Sciences, 29, 429–447.
    [Google Scholar]
  20. El-Enen, M.M.A.
    2011. Geochemistry, provenance, and metamorphic evolution of Gabal Samra Neoproterozoic metapelites, Sinai, Egypt. Journal of African Earth Sciences, 59, 269–282.
    [Google Scholar]
  21. Embry, A.F.
    2009. Practical Sequence Stratigraphy. Canadian Society of Petroleum Geologists, Calgary, Alberta, online at www.cspg.org
    [Google Scholar]
  22. Fielding, C.R.
    1985. Coal depositional models and the distinction between alluvial and delta plain environments. Sedimentary Geology, 42, 41–48.
    [Google Scholar]
  23. Gabrielsen, R.H. & Braathen, A.
    2014. Models of fracture lineaments – joint swarms, fracture corridors and faults in crystaline rocks, and their genetic relations. Tectonophysics, 628, 26–44.
    [Google Scholar]
  24. Gabrielsen, R.H., Braathen, A., Kjemperud, M. & Valdresbråten, M.L.
    2016. The geometry and dimensions of fault-core lenses. In: Childs, C., Holdsworth, R.E., Jackson, C.A.-L., Manzocchi, T., Walsh, J.J. & Yielding, G. (eds) The Geometry and Growth of Normal Faults. Geological Society, London, Special Publications, 439. First published online February 5, 2016, https://doi.org/10.1144/SP439.4
    [Google Scholar]
  25. George, R.J.
    1992. Hydraulic properties of groundwater systems in the saprolite and sediments of the weathbelt, Western Australia. Journal of Hydrogeology, 130, 251–278.
    [Google Scholar]
  26. Ghienne, J.F., Le Heron, D.P., Moreau, J., Denis, M. & Deynoux, M.
    2007. The Late Ordovician glacial sedimentary system of the North Gondwana platform. In: Hambrey, M., Christoffersen, P., Glasser, N., Janssen, P., Hubbard, B. & Siegert, M. (eds) Glacial Sedimentary Processes and Products. International Association of Sedimentologists, Special Publications, 39, 295–319.
    [Google Scholar]
  27. Hacker, B.R.
    1997. Diagenesis and fault valve seismicity of crustal faults. Journal of Geophysical Research, 102, 24–459.
    [Google Scholar]
  28. Hancock, P.L.
    1985. Brittle microtectonics: principles and practice. Journal of Structural Geology, 7, 437–457.
    [Google Scholar]
  29. Issawi, B, Osman, R., Francis, M., El Hinnawi, M. El Bagory, Y., Mazhar, A. & Labib, S.
    1998. Contribution to the geology of East Sinai. Annals of the Geological Survey of Egypt, 21, 55–88.
    [Google Scholar]
  30. Johnson, P.R., Andresen, A., Collins, A.S., Fowler, A.R., Fritz, H., Ghebreab, W. & Stern, R.J.
    2011. Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences, 61, 167–232.
    [Google Scholar]
  31. Jones, M.J.
    1985. The weathered zone aquifers of the basement complex areas of Africa. Quarterly Journal of Engineering Geology and Hydrogeology, 18, 35–46, https://doi.org/10.1144/GSL.QJEG.1985.018.01.06
    [Google Scholar]
  32. Kamei, A., Fukushi, K., Takagi, T. & Tsukamoto, H.
    2012. Chemical overprinting of magmatism by weathering: A practical method for evaluating the degree of chemical weathering of granitoids. Applied Geochemistry, 27, 796–805.
    [Google Scholar]
  33. Khalifa, M.A., Soliman, H.E. & Wanas, H.A.
    2006. The Cambrian Araba Formation in northeastern Egypt: Facies and depositional environments. Journal of Asian Earth Sciences, 27, 873–884.
    [Google Scholar]
  34. Khalil, S.M. & McClay, K.R.
    2001. Tectonic evolution of the NW Red Sea–Gulf of Suez rift system. In: Wilson, R.C.L., Whitmarsh, R.B., Taylor, B. & Froitzheim, N. (eds) Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea. Geological Society, London, Special Publications, 187, 453–473, https://doi.org/10.1144/GSL.SP.2001.187.01.22
    [Google Scholar]
  35. Knipe, R.J.
    1993. The influence of fault zone processes and diagenesis on fluid flow. In: Horbury, A.D. & Robinson, A.G. (eds) Diagenesis and Basin Development. American Association of Petroleum Geologists, Studies in Geology, 36, 135–154.
    [Google Scholar]
  36. Koning, T.
    2003. Oil and gas production from basement reservoirs: examples from Indonesia, USA and Venezuela. In: Petford, N. & McCaffrey, K.J.W. (eds) Hydrocarbons in Crystalline Rocks. Geological Society, London, Special Publications, 214, 83–92, https://doi.org/10.1144/GSL.SP.2003.214.01.05
    [Google Scholar]
  37. Kröner, A., Krüger, J. & Rashwan, A.A.
    1994. Age and tectonic setting of granitoid gneisses in the Eastern Desert of Egypt and south-west Sinai. Geologische Rundschau, 83, 502–513.
    [Google Scholar]
  38. Laubach, S.E.
    2003. Practical approaches to identifying sealed and open fractures. AAPG Bulletin, 87, 561–579.
    [Google Scholar]
  39. Laubach, S.E. & Ward, M.E.
    2006. Diagenesis in porosity evolution of opening-mode fractures, Middle Triassic to Lower Jurassic La Boca Formation, NE Mexico. Tectonophysics, 419, 75–97.
    [Google Scholar]
  40. Leithold, E.L. & Bourgeois, J.
    1984. Characteristics of coarse-grained sequences deposited in nearshore, wave-dominated environments-examples from the Miocene of south-west Oregon. Sedimentology, 31, 749–775.
    [Google Scholar]
  41. Lie, J.E., Nilsen, E.H., Grandal, H., GrueK. & Sørlie, R.
    2016. A successful geophysical prediction of fractured porous basement reservoir – Rolvsnes oil discovery 2015, Utsira High. In: Proceedings of the 78th EAGE Conference and Exhibition, https://doi.org/10.3997/2214-4609.201600593
    [Google Scholar]
  42. Lindanger, M., Gabrielen, R.H. & Braathen, A.
    2007. Analysis of rock lenses in extensional faults. Norwegian Journal of Geology, 87, 361–372.
    [Google Scholar]
  43. McPherson, J.G., Shanmugam, G. & Moiola, R.J.
    1988. Fan-deltas and braid deltas – conceptual providers. In: Nemec, W. & Steel, R. (eds) Fan Deltas: Sedimentology and Tectonic Setting. Blackie, Glasgow, 14–22.
    [Google Scholar]
  44. Morsy, A.M., Abou El Enein, M.K. & El Fiky, A.M.
    1993. A trilobite fossil from Abu Hamata Formation, near Wadi Baba, west central Sinai, Egypt. Annals of the Geological Survey of Egypt, 19, 351–356.
    [Google Scholar]
  45. Moustafa, A.R.
    1993. Structural characteristics and tectonic evolution of the east-margin blocks of the Suez rift. Tectonophysics, 223, 381–399.
    [Google Scholar]
  46. 2004. Geologic Maps of the Eastern Side of the Suez Rift (Western Sinai Peninsula). American Association of Petroleum Geologists, Map Series, Egypt.
    [Google Scholar]
  47. Odling, N.E.
    1997. Scaling and connectivity of joint systems in sandstone from western Norway. Journal of Structural Geology, 19, 1257–1271.
    [Google Scholar]
  48. Ogata, K., Senger, K., Braathen, A. & Tveranger, J.
    2014. Fracture corridors as seal-bypass systems in siliciclastic reservoir–caprock successions: fieldbased insights from the Jurassic Entrada Formation (SE Utah, USA). Journal of Structural Geology, 66, 162–187.
    [Google Scholar]
  49. Oliva, P., Viers, J. & Dupré, B.
    2003. Chemical weathering in granitic environments. Chemical Geology, 202, 225–256.
    [Google Scholar]
  50. Patton, T.L., Moustafa, A.R., Nelson, R.A. & Abdine, S.A.
    1994. Tectonic evolution and structural setting of the Suez Rift. In: Landon, S.M. (ed.) Interior Rift Basins. American Association of Petroleum Geologists, Memoirs, 59, 7–55.
    [Google Scholar]
  51. Place, J., Géraud, Y. et al.
    2016. Structural control of weathering processes within exhumed granitoids: Compartmentalisation of geophysical properties by faults and fractures. Journal of Structural Geology, 84, 102–119.
    [Google Scholar]
  52. Reineck, H-E & Wunderlich, F.
    1968. Classification and origin of flaser and lenticular bedding. Sedimentology, 11, 99–104.
    [Google Scholar]
  53. Rønnevik, H.C.
    2015. Chapter 26: Exploration strategy. In: Bjørlykke, K. (ed.) Petroleum Geoscience . Springer, Berlin, 639–651.
    [Google Scholar]
  54. Salah, M.G. & Alsharhan, A.S.
    1998. The Precambrian basement: A major reservoir in the rifted basin, Gulf of Suez. Journal of Petroleum Science and Engineering, 19, 201–222.
    [Google Scholar]
  55. Senger, K., Tveranger, J., Braathen, A., Ogata, K., Olausen, S. & Larsen, L.
    2015. CO2 storage resource estimates in unconventional reservoirs: insights from a pilot-sized storage site in Svalbard, Arctic Norway. Environmental Earth Sciences, 73, 3987–4009, https://doi.org/10.1007/s12665-014-3684-9
    [Google Scholar]
  56. Sharp, I.R., Gawthorpe, L.R., Armstrong, B. & Underhill, J.R.
    2000. Propagation history and passive rotation of mesoscale normal faults: implications for syn-rift stratigraphic development. Basin Research, 12, 285–306.
    [Google Scholar]
  57. Shepherd, M.
    2009. Siliciclastic shorelines and barrier island reservoirs. In: Shepherd, M. (ed.) Oil Field Production Geology. American Association of Petroleum Geologists, Memoirs, 91, 289–293.
    [Google Scholar]
  58. Singer, A.
    1984. The paleoclimatic interpretation of clay minerals in sediments: A review. Earth-Science Reviews, 21, 251–293.
    [Google Scholar]
  59. Slightam, C.
    2014. Characterizing seismic-scale faults pre- and post-drilling; Lewisian Basement, West of Shetlands, UK. In: Spence, G.H., Redfern, J., Aguilera, R., Bevan, T.G., Cosgrove, J.W., Couples, G.D. & Daniel, J.-M. (eds) Advances in the Study of Fractured Reservoirs. Geological Society, London, Special Publications, 374, 311–331, https://doi.org/10.1144/SP374.6
    [Google Scholar]
  60. SolimanS.M. & El Fetouh, M.
    1969. Petrology of the Carboniferous sandstone in west central Sinai. Journal of Geology of the United Arab Republic, 69, 61–143.
    [Google Scholar]
  61. Tawfik, H.A., Ghandour, I.M., Maejima, W. & Abdel Hamid, A.T.
    2010. Reservoir heterogeneity in the Cambrian sandstones: a case study from the Araba Formation, Gulf of Suez region, Egypt. Journal of Geoscience, Osaka City University, 53, 1–29.
    [Google Scholar]
  62. 2011. Petrography and geochemistry of the lower Paleozoic Araba Formation, north eastern desert, Egypt: Implications for province, tectonic setting and weathering signature. Journal of Geoscience, Osaka City University, 54, 1–16.
    [Google Scholar]
  63. Tawfik, H.A., Ghandour, I.M., Wataru, M. & Amstrong-Altrin, J.S.
    2015. Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: implications for provenance, tectonic setting and source weathering. Geological Magazine, 154, 1–23, https://doi.org/10.1017/S0016756815000771
    [Google Scholar]
  64. Trice, R.
    2014. Basement exploration, West of Shetlands: progress in opening a new play on the UKCS. In: Turner, J.P., Healy, D., Hillis, R.R. & Welch, M.J. (eds) Geomechanics and Geology. Geological Society, London, Special Publications, 397, 81–105, https://doi.org/10.1144/SP397.3
    [Google Scholar]
  65. Turner, B.F., Stallard, R.F. & Brantley, S.L.
    2003. Investigation of in situ weathering of quartz diorite bedrock in the Rio Icacos basin, Luquillo Experimental Forest, Puerto Rico. Chemical Geology, 202, 313–341.
    [Google Scholar]
  66. Vázquez, M., Ramírez, S., Morata, D., Reich, M., Braun, J.-J. & Carretier, S.
    2016. Regolith production and chemical weathering of granitic rocks in central Chile. Chemical Geology, 446, 87–98, https://doi.org/10.1016/j.chemgeo.2016.09.023
    [Google Scholar]
  67. Venvik Ganerød, G., Braathen, A. & Willemoes Wissing, B.
    2008. Predictive permeability model of extensional faults in crystalline and metamorphic rocks; verification by pre-grouting in sub-sea tunnels in Norway. Journal of Structural Geology, 30, 993–1004.
    [Google Scholar]
  68. Wanas, H.A.
    2011. The Lower Paleozoic rock units in Egypt: An overview. Geoscience Frontiers, 2, 491–507.
    [Google Scholar]
  69. Weissbrod, T.
    1969. The Paleozoic of Israel and adjacent countries, part II: Paleozoic outcrops in southwest Sinai and their correlation with those of southern Israel. Geological Survey of Israel Bulletin, 48, 1–32.
    [Google Scholar]
  70. Wibberley, C.A.J., Yielding, G. & Di Toro, G.
    2008. Recent advances in the understanding of fault zone internal structure: a review. In: Wibberley, C.A.J., Kurz, W., Imber, J., Holdsworth, R.E. & Collettini, C. (eds) The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties. Geological Society, London, Special Publications, 299, 5–33, https://doi.org/10.1144/SP299.2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-163
Loading
/content/journals/10.1144/petgeo2016-163
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error