1887
Volume 16, Issue 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Data acquired by an autonomous underwater vehicle (AUV) towing a source (1600–3500 Hz) and a horizontal array of hydrophones have been analysed to image discrete, isolated or even a small cluster of scatterers within the sediment, to determine shallow migration paths of hydrocarbons in a mud volcano system of the Malta Plateau. An algorithm based on a semblance function was applied to the acoustic data to highlight scatterers rather than interface reflections. The resulting scatterer map, obtained along the AUV track, generated a pseudo‐three‐dimensional coverage of the study area, with a horizontal and vertical resolution of roughly 3–5 m and 5–10 m, respectively. This map was combined with high‐resolution bathymetric and backscattering seafloor maps obtained from previous explorations. This integrated dataset provides new evidence for the role of fault zones as a preferential path for gas/fluid migration and reveals the intermittent activity of seeping gas. The data show, in particular, that gas bubble slugs, i.e. discontinuous gas columns, rise through Plio‐Quaternary sediments along a complex system of conduits terminating at the surface into quiescent mud volcanoes. The gas flux is facilitated by the regional stress field that results in dilatant conditions on the mapped fault zones.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12017
2018-11-08
2024-03-29
Loading full text...

Full text loading...

References

  1. AbramsMA2005. Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Marine and Petroleum Geology22, 457–477.
    [Google Scholar]
  2. AlgarC.K., BoudreauB.P. and BarryM.A.2011. Initial rise of bubbles in cohesive sediments by a process of viscoelastic fracture. Journal of Geophysical Research116, B04207.
    [Google Scholar]
  3. AndersonE.M.1905. The dynamics of faulting. Transactions of the Edinburgh Geological Society8, 387–402.
    [Google Scholar]
  4. AndersenK.J.2012. Fluid flow features in hydrocarbon plumbing systems: what do they tell us about the basin evolution? Marine Geology332–334, 89–108.
    [Google Scholar]
  5. BartonCA, ZobackMD and MoosD1995. Fluid flow along potentially active faults in crystalline rock, Geology23(8), 683–686.
    [Google Scholar]
  6. Ben‐AvrahamZ. and GrassoM.1991. Crustal structure variations and transcurrent faulting at the eastern and western margins of the eastern Mediterranean. Tectonophysics196, 269–277.
    [Google Scholar]
  7. BistacchiA., MassironiM., MenegonL., Bolognesi, F. and Donghi, V.2012. On the nucleation of non‐Andersonian faults along phyllosilicate‐rich mylonite belts. The Geological Society, Special Publication367, 185–199.
    [Google Scholar]
  8. BlombergA.E.A., NilsenC.‐I.C., AustengA. and HansenR.E.2013. Adaptive sonar imaging using aperture coherence. IEEE Journal of Oceanic Engineering38(1), 98–108.
    [Google Scholar]
  9. BorceaL., Del CuetoF.G., PapanicolaouG. and TsogkaC.2009. Filtering deterministic layer effects in imaging. Multiscale Modeling & Simulation7(3):1267–1301.
    [Google Scholar]
  10. BoudreauP.B, The physics of bubbles in surficial, soft, cohesive sediments. 2012. Marine and Petroleum Geology38, 1–18.
    [Google Scholar]
  11. CangemiM., Di LeonardoR., BellancaA., CundyA., NeriR. and AngeloneM.2010. Geochemistry and mineralogy of sediments and authigenic carbonates from the Malta Plateau, Strait of Sicily (Central Mediterranean): relationships with mud/fluid release from a mud volcano systemChemical Geology276, 294–308.
    [Google Scholar]
  12. CartwrightJ.A.2007. The impact of 3D seismic on modeling fluid flow in sedimentary basins. Journal of the Geological Society of London164, 881–893.
    [Google Scholar]
  13. CartwrightJ., HuuseM. and AplinA.2007. Seal bypass systems. American Association of Petroleum Geologists Bulletin91, 1141–1166.
    [Google Scholar]
  14. CartwrightJ. and SantamariaC.2015. Seismic characteristics of fluid escape pipes in sedimentary basins: implications for pipe genesis. Marine and Petroleum Geology65, 126–140.
    [Google Scholar]
  15. CeramicolaS., DupréS., SomozaL and WoodsideJ.2018. Cold Seep Systems. In: Submarine Geomorphology (eds A.Micallef , S.Krastel , A.Savini ), pp. 367–387. Springer.
    [Google Scholar]
  16. ChiericiG.L., Dalla CasaG. and TerziL.1979. Enhanced oil recovery by gas injection in a 587 heavy oil, fractured reservoir‐Gela Field. Italy Symposium on New Techniques for 588 Exploration and Exploitation. European Economic Commission, pp. 501–510.
    [Google Scholar]
  17. DixC.1955. Seismic velocities from surface measurements. Geophysics20, 68–86.
    [Google Scholar]
  18. DziewonskiA. M., ChouT.‐A. and WoodhouseJ. H.1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, Journal of Geophysical Research86, 2825–2852.
    [Google Scholar]
  19. EkströmG., NettlesM. and DziewonskiA. M.2012. The global CMT project 2004–2010: centroid‐moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors200–201, 1–9.
    [Google Scholar]
  20. EtiopeG.2015. Natural Gas Seepage: The Earth's Hydrocarbon Degassing. Springer.
    [Google Scholar]
  21. EtiopeG. and MartinelliG.2002. Migration of carrier and trace gases in the geosphere: an overview. Physics of the Earth and Planetary Interiors129, 185–204.
    [Google Scholar]
  22. FerrillD.A., WinterleJ.R., WittmeyerG.W., SimsD.W., ColtonS.L., et al. (1999) Stressed rock strains groundwater at Yucca mountain, Nevada. GSA Today9(5), 1–8.
    [Google Scholar]
  23. FinettiI.R.1982. Structure, stratigraphy and evolution of central Mediterranean. Bollettino di geofisica teorica ed applicata24, 247–312.
    [Google Scholar]
  24. GardinerW., GrassoM. and SedgeleyD.1993. Plio‐Pleistocene stratigraphy and fault movement of the Malta platform. In: UNESCO Technical Reports in Marine Science, Vol. 58 (eds MaxM.D. , ColantoniP. ), pp. 111–116. Elsevier.
    [Google Scholar]
  25. GardinerW., GrassoM. and SedgeleyD.1995. Plio‐Pleistocene fault movement as evidence for megablock kinematics within the Hyblean–Malta Plateau, central Mediterranean. Journal Geodynamics19(1), 35–51.
    [Google Scholar]
  26. HayesM. P. and GoughP. T. (2009). Synthetic aperture sonar: a review of current status. IEEE Journal of Oceanic Engineering34(3), 207–224.
    [Google Scholar]
  27. HeidbachO., RajabiM., ReiterK., ZieglerM. and WSM Team (2016). World Stress Map Database Release 2016. GFZ Data Services. http://doi.org/10.5880/WSM.2016.001
  28. HollandC.W., EtiopeG., MilkovA.V., MichelozziE. and FavaliP.2003. Mud volcanoes discovered offshore Sicily. Marine Geology199, 1–6.
    [Google Scholar]
  29. HornbachM.J., RuppelC. and Van DoverC.L.2007. Three‐dimensional structure of fluid conduits sustaining an active deep marine cold seep. Geophysical Research Letters34, https://doi.org/10.1029/2006GL028859.
    [Google Scholar]
  30. JuddA. and HovlandM.2007. Seabed Fluid Flow – Impact on Geology, Biology and the Marine Environment. Cambridge University Press, Cambridge.
    [Google Scholar]
  31. LinkWK1952. Significance of oil and gas seeps in world oil exploration. AAPG Bull36, 1505–1540.
    [Google Scholar]
  32. LippariniL., ScroccaD., MarisiliP. and MorandiS.2009. Offshore Malta licence in the Central Mediterranean Sea offers hope of hydrocarbon potential. First Break27, 105–116.
    [Google Scholar]
  33. LøsethH., WensaasL., ArntsenB. and HovlandM.2003. Gas and fluid injection triggering shallow mud mobilization in the Hordaland Group, North Sea. In: Geological Society Special Publication, Vol. 216 (eds P.Van Rensbergen , R.R.Hillis , A.J.Maltman , C.K.Morley ) pp. 139–157. Geological Society, London.
    [Google Scholar]
  34. LøsethH., GadingM. and WensaasL.2009. Hydrocarbon leakage interpreted on seismic data. Marine and Petroleum Geology26, 1304–1319.
    [Google Scholar]
  35. MacgregorDS1993. Relationships between seepage, tectonics and subsurface petroleum reserves. Marine and Petroleum Geology10, 606–619.
    [Google Scholar]
  36. MajewskiP. and KlusekZ.2011. Expressions of shallow gas in the Gdańsk Basin. Zeszyte Naukowe Akademii Marynarki Wojennej4, 187.
    [Google Scholar]
  37. MassironiM., BistacchiA. and MenegonL.2011. Misoriented faults in exhumed metamorphic complexes: rule or exception? Earth planet. Science Letters307, 233–239.
    [Google Scholar]
  38. MatavalliL. and NovelliL.1990. Geochemistry and habitat of the oils of Italy. AAPG Bulletin74, 1623–1639.
    [Google Scholar]
  39. MathysM., ThießenO., TheilenF. and SchmidtM.2005, Seismic characterisation of gas‐rich near surface sediments in the Arkona Basin, Baltic Sea, Marine Geophysical Research26(2–4), 207–224.
    [Google Scholar]
  40. MaxM.D., KristensenA. and MichelozziE.1993. Small scale Plio‐Quaternary sequence stratigraphy and shallow geology of the west‐central Malta Plateau. In: Max M.D., Colantoni P. (eds) Geological development of the Sicilian‐Tunisian Platform. UNESCO Technical Reports in Marine Science, Urbino, pp. 117–122.
  41. MazziniA. and EtiopeG.2017. Mud volcanism: an updated review. Earth Science Reviews168, 81–112.
    [Google Scholar]
  42. MicallefA., BerndtC. and DeBonoG2011. Fluid flow system of the Malta Plateau, Central Mediterranean Sea. Marine Geology284, 74–85.
    [Google Scholar]
  43. MorrisA. P., FerrillD. A. and HendersonD. B.1996. Slip‐tendency analysis and fault reactivation. Geology24, 275–278.
    [Google Scholar]
  44. OslerJ. and AlganO.1999. A High Resolution Seismic Sequence Analysis of the MaltaPlateau. Saclantcen Report serial no. SR‐311.
  45. PinsonS. and GuillonL.2010. Sound speed profile characterization by the image source method. Journal of the Acoustical Society of America128, 1685–1693.
    [Google Scholar]
  46. PinsonS., GuillonL., and HollandC.W.2013. Range dependent sediment sound speed profile measurements using the image source method. Journal of the Acoustical Society of America134, 156–165.
    [Google Scholar]
  47. PinsonS. and HollandC.W.2014. Seafloor sound‐speed profile and interface dip angle characterization by the image source method. Journal of the Acoustical Society of America136, 596–603.
    [Google Scholar]
  48. PinsonS. and HollandC.W.2015. Layer filtering for seafloor scatterers imaging. Journal of the Acoustical Society of America137(5), EL355–359.
    [Google Scholar]
  49. PinsonS. and HollandC.W.2016. Seafloor sound‐speed profile characterization with non‐parallel layering by the image source method: application to CLUTTER'09 campaign data. Journal of the Acoustical Society of America140(2), EL154‐158.
    [Google Scholar]
  50. PondrelliS., SalimbeniS., EkströmG., MorelliA., GasperiniP. and VannucciG.2006. The Italian CMT dataset from 1977 to the present, Physics of the Earth Planetary Interiors159/3‐4, 286–303.
    [Google Scholar]
  51. PondrelliS., SalimbeniS., MorelliA., EkströmG., PostpischlL., VannucciG.et al. 2011. European‐Mediterranean regional centroid moment tensor catalog: solutions for 2005–2008, Phys. Earth Planet. Int.185(3), 74–81.
    [Google Scholar]
  52. PondrelliS. and SalimbeniS.2015. Regional moment tensor review: an example from the European Mediterranean region. In Encyclopedia of Earthquake Engineering pp. 1–15. Springer, Berlin Heidelberg.
    [Google Scholar]
  53. SaviniA., MalinvernoE., EtiopeG., TessaroloC. and CorselliC.2009. Shallow seep‐related seafloor features along the Malta Plateau (Sicily channel—Mediterranean Sea): morphologies and geo‐environmental control of their distribution. Marine and Petroleum Geology26, 1831–1848.
    [Google Scholar]
  54. ScognamiglioL., TintiE. and MicheliniA.2009. Real‐time determination of seismic moment tensor for Italian region. Bulletin of the Seismological Society of America99(4), 2223–2242.
    [Google Scholar]
  55. TaludkerA.R.2012. Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova24(4). https://doi.org/10.1111/j.1365-3121.2012.01066.x
    [Google Scholar]
  56. TanerMT and KoehlerF1969. Velocity Spectra‐Digital Computer Derivation and Application of Velocity Functions. Geophysics34(6), 859–881.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12017
Loading
/content/journals/10.1002/nsg.12017
Loading

Data & Media loading...

Supplements

Figure S1 Example of the match filtered seafloor reflected signals, obtained using the source and receivers, towed by the AUV, described in the article. Figure S2 Echo‐sounder and side‐scan sonar data (partially published and discussed in Savini . 2009), documenting gas plumes escaping from a single mud volcano.

Supporting Information Tables S1 and S2 contain all focal solution parameters collected for the Malta Plateau and the Strait of Sicily (Supporting Information Table S1) and the moment tensor dataset used for the study (Supporting Information Table S2)

   

   

   

   

  • Article Type: Research Article
Keyword(s): 3D imaging; data acquisition; data processing; faults; Scattering; seismic; shallow gas

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error