1887
Volume 66, Issue 4
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Finite‐difference frequency‐domain modelling of seismic wave propagation is attractive for its efficient solution of multisource problems, and this is crucial for full‐waveform inversion and seismic imaging, especially in the three‐dimensional seismic problem. However, implementing the free surface in the finite‐difference method is nontrivial. Based on an average medium method and the limit theorem, we present an adaptive free‐surface expression to describe the behaviour of wavefields at the free surface, and no extra work for the free‐surface boundary condition is needed. Essentially, the proposed free‐surface expression is a modification of density and constitutive relation at the free surface. In comparison with a direct difference approximate method of the free‐surface boundary condition, this adaptive free‐surface expression can produce more accurate and stable results for a broad range of Poisson's ratio. In addition, this expression has a good performance in handling the lateral variation of Poisson's ratio adaptively and without instability.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12618
2018-03-01
2024-04-23
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.1980. Quantitative Seismology: Theory and Methods. I. W. H. Freeman and Company.
    [Google Scholar]
  2. AltermanZ. and KaralF.1968. Propagation of elastic waves in layered median by finite differences methods. Bulletin of the Seismological Society of America58, 367–398.
    [Google Scholar]
  3. AltermanZ.S. and RotenbergA.1969. Seismic waves in a quarter plane. Bulletin of the Seismological Society of America59, 347–368.
    [Google Scholar]
  4. BohlenT. and SaengerE.H.2006. Accuracy of heterogeneous staggered‐grid finite‐difference modeling of Rayleigh waves. Geophysics71, T109–T115.
    [Google Scholar]
  5. CaoJ., ChenJ.B. and DaiM.X.2016. Improved free‐surface expression for frequency‐domain elastic optimal mixed‐grid modeling. Journal of Applied Geophysics130, 71–80.
    [Google Scholar]
  6. ChenJ.B. and CaoJ.2016. Modeling of frequency‐domain elastic‐wave equation with an average‐derivative optimal method. Geophysics81, T339–T356.
    [Google Scholar]
  7. FichtnerA.2011. Full Seismic Waveform Modeling and Inversion. Springer.
    [Google Scholar]
  8. GravesR.W.1996. Simulating seismic wave propagation in 3D elastic media using staggered‐grid finite differences. Bulletin of the Seismological Society of America86, 1091–1106.
    [Google Scholar]
  9. HustedtB., OpertoS. and VirieuxJ.2004. Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling. Geophysical Journal International by the Royal Astronomical Society157, 1269–1296.
    [Google Scholar]
  10. IlanA., UngarA. and AltermanZ.1975. An improved representation of boundary conditions in finite difference schemes for seismological problems. Geophysical Journal International by the Royal Astronomical Society43, 727–745.
    [Google Scholar]
  11. IlanA. and LoewenthalD.1976. Instability of finite difference schemes due to boundary conditions in elastic media. Geophysical Prospecting24, 431–453.
    [Google Scholar]
  12. JoC.‐H., ShinC. and SuhJ.H.1996. An optimal 9‐point, finite‐difference, frequency‐space, 2‐D scalar wave extrapolator. Geophysics61, 529–537.
    [Google Scholar]
  13. JohnsonL.R.1974. Greens function for Lamb's problem. Geophysical Journal International37, 99–131.
    [Google Scholar]
  14. KellyK.R., WardR.W., TreitelS. and AlfordR.M.1976. Synthetic seismograms: a finite difference approach. Geophysics41, 12–27.
    [Google Scholar]
  15. KristekJ., MoczoP. and ArchuletaR.2002. Efficient methods to simulate planar free‐surface in the 3D 4th‐order staggered‐grid finite‐difference schemes. Studia Geophysica et Geodaetica46, 355–381.
    [Google Scholar]
  16. LanH. and ZhangZ.2011. Comparative study of the free‐surface boundary condition in two‐dimensional finite‐difference elastic wave field simulation. Journal of Geophysics and Engineering8, 257–286.
    [Google Scholar]
  17. LevanderA.R.1988. Fourth‐order finite‐difference P‐SV seismograms. Geophysics53, 1425–1436.
    [Google Scholar]
  18. LiY., MétivierL., BrossierR., HanB. and VirieuxJ.2015. 2D and 3D frequency‐domain elastic wave modeling in complex media with a parallel iterative solver. Geophysics80, T101–T118.
    [Google Scholar]
  19. MinD.‐J., ShinC., KwonB.‐D. and ChungS.2000. Improved frequency‐domain elastic wave modeling using weighted‐averaging difference operators. Geophysics65, 884–895.
    [Google Scholar]
  20. MinD.‐J., ShinC. and YooH.S.2004. Free‐surface boundary condition in finite‐difference elastic wave modeling. Bulletin of the Seismological Society of America94, 237–250.
    [Google Scholar]
  21. MittetR.2002. Free‐surface boundary conditions for elastic staggered modeling schemes. Geophysics67, 1616–1623.
    [Google Scholar]
  22. MoczoP., KristekJ., VavrycukV., ArchuletaR.J. and HaladaL.2002. 3D heterogeneous staggered‐grid finite‐difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bulletin of the Seismological Society of America92, 3042–3066.
    [Google Scholar]
  23. MUMPUS
    MUMPUS2016. Multifrontal Massively Parallel Solver Users' Guide .
  24. OpertoS., VirieuxJ., AmestoyP., L'ExcellentJ.‐Y., GiraudL. and AliH.B.H.2007. 3D finite‐difference frequency‐domain modeling of visco‐acoustic wave propagation using a massively parallel direct solver: a feasibility study. Geophysics72(5), SM195–SM211.
    [Google Scholar]
  25. OpertoS., VirieuxJ., RibodettiA. and AndersonJ.E.2009. Finite‐difference frequency‐domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media. Geophysics74, T75–T95.
    [Google Scholar]
  26. ŠteklI. and PrattR.G.1998. Accurate viso‐elastic modeling by frequency‐domain finite difference using rotated operators. Geophysics63, 1779–1794.
    [Google Scholar]
  27. VidaleJ.E. and ClaytonR.W.1986. A stable free‐surface boundary condition for two‐dimensional elastic finite‐difference wave simulation. Geophysics51, 2247–2249.
    [Google Scholar]
  28. VirieuxJ.1984. SH‐wave propagation in heterogeneous media: velocity‐stress finite‐difference method. Geophysics49, 1933–1957.
    [Google Scholar]
  29. VirieuxJ.1986. P‐SV wave propagation in heterogeneous media: velocity‐stress finite‐difference method. Geophysics51, 889–901.
    [Google Scholar]
  30. WangS., de HoopM.V. and XiaJ.2011a. Massively parallel structured multifrontal solver for time harmonic elastic waves in 3‐D anisotropic media. Geophysical Prospecting59, 857–873.
    [Google Scholar]
  31. WangS., LiX.S., XiaJ., SituY. and de HoopM.V.2011b. Efficient scalable algorithms for hierarchically semi‐separable matrices. SIAM Journal on Scientific Computing.
    [Google Scholar]
  32. WangS., de HoopM.V. and XiaJ. and LiX.S.2012a. Massively parallel structured multifrontal solver for time harmonic elastic waves in 3‐D anisotropic media. Geophysical Journal International191, 346–366.
    [Google Scholar]
  33. WangS., XiaJ., de HoopM.V. and LiX.S.2012b. Massively parallel structured direct solver for equations describing time‐harmonic qP‐polarized waves in TTI media. Geophysics77, T69–T82.
    [Google Scholar]
  34. XuY., XiaJ. and MillerR.D.2007. Numerical investigation of implementation of air‐earth boundary by acoustic‐elastic boundary approach. Geophysics72, SM147–SM153.
    [Google Scholar]
  35. ZahradníkJ., MoczoP. and HronF.1993. Testing four elastic finite‐difference schemes for behavior at discontinuities. Bulletin of the Seismological Society of America83, 107–129.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12618
Loading
/content/journals/10.1111/1365-2478.12618
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Finite difference; Free surface; Frequency domain; Seismic wave modelling

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error