1887
Volume 67 Number 1
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Sands belonging to Kamalapuram Formation of Paleocene‐Eocene age are deposited in Cauvery basin as incised valley fill during a regressive cycle. Here we attempt to quantify the influence of diagenesis on pore‐filling materials using rock physics template constrained by geohistory modelling. Primarily, porosity–velocity and acoustic impedance – the ratio of P‐wave and S‐wave velocity (/) cross‐plots are used as rock physics templates. Rock physics template has efficiently quantified pore‐filling materials namely; contact cement and non‐contact cement. The estimated contact cement and non‐contact cement are correlated with conventional petrophysical logs within the selected depth interval. Further, this correlation is used to interpret the composition of pore‐filling materials. Shallower depth intervals (I and II) exhibit moderate non‐contact cement (4–5%) and insignificant contact cement (1–2% approx.) depositions. However, deeper interval (III) records a significant amount of pore‐filling materials amounting average of 12% non‐contact cement and 4% contact cement. Pore‐filling materials demonstrate a positive correlation with the depth of burial. The fluid response is substantially affected by the degree of diagenesis, composition and spatial distribution of pore‐filling materials. Shallower depth intervals (1770–1786 m and 1858–1878 m) are relatively more sensitive to fluid changes as it is affected by insignificant contact cement. The depth interval 1770–1786 m shows class II (oil) and class III (gas) amplitude variation with offset anomalies. The sand occurring in depth interval 1858–1878 m demonstrates class IIP (oil) and II (gas) anomaly. The deeper interval (2118–2170 m) is comparatively stiffer and demonstrates class I amplitude variation with offset (oil and gas sand) anomaly.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12715
2018-12-06
2024-04-18
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.1980. Quantitative Seismology: Theory and Methods, Vol. 1, W.H. Freeman and company: Francisco.
    [Google Scholar]
  2. AthyL.F.1930. Density, porosity and compaction of sedimentary rocks. American Association of Petroleum Geologists Bull14, 1–24.
    [Google Scholar]
  3. AvsethP., JohansenA.T., BakhorjiA. and MustafaH.M.2014. Rock‐physics modeling guided by depositional and burial history in low‐to‐intermediate‐porosity sandstones. Geophysics79, D115–D121.
    [Google Scholar]
  4. AvsethP., JørstadA., WijngaardenA. and MavkoG.2009, Rock physics estimation of cement volume, sorting, and net‐to‐gross in North sea sandstones. The Leading Edge28, 98–108.
    [Google Scholar]
  5. AvsethP., MavkoG., DvorkinJ. and MukerjiT.2001. Rock Physics and Seismic Properties of sands and shales as a function of Burial Depth. SEG Technical Program, San Antonio, TX, Expanded Abstract, 1780–1783.
  6. AvsethP., MukerjiT. and MavkoG.2008. Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk , 6th edn. Cambridge University Press: New York.
    [Google Scholar]
  7. BackusG.E.1962. Long‐wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research67, 4427–4440.
    [Google Scholar]
  8. BatzleM.L., HanD. and CastagnaJ.P.1995. Fluid effects on bright spot and AVO analysis. SEG Technical Program Expanded Abstracts, 1119–1121.
    [Google Scholar]
  9. BatzleM. and WangZ.1992. Seismic properties of pore fluids. Geophysics57, 1396–1408.
    [Google Scholar]
  10. BiotM.A. and WillisD.G.1957. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics24, 594–601.
    [Google Scholar]
  11. BjørlykkeK. and EgebergP.K.1993. Quartz cementation in sedimentary basins. American Association of Petroleum Geologists77, 1538–1548.
    [Google Scholar]
  12. CastagnaJ.P. and HerbertW.S.1997. Principles of AVO crosplotting. The Leading Edge16, 337–344.
    [Google Scholar]
  13. CastagnaJ.P., HerbertW. and Sand FosterD.J.1998. Framework for AVO gradient and intercept interpretation. Geophysics63, 948–956.
    [Google Scholar]
  14. ChatterjeeR. and MukhopadhyayM.2001. Stress‐induced borehole elongation upto 3.6 km depth in the Cauvery basin, India. 42nd Annual logging Symposium: Society of Professional Well Log Analysts, Texas, USA, Paper no. AA, 1–13.
  15. DvorkinJ. and NurA.1996. Elasticity of high‐porosity sandstones: theory for two North Sea datasets. Geophysics61, 1363–1370.
    [Google Scholar]
  16. Datta GuptaS., ChatterjeeR. and Farooqui, M.Y.2012. Rock physics template (RPT) analysis of well logs and seismic data for lithology and fluid classification in Cambay basin. International Journal of Earth Sciences101, 1407–1426.
    [Google Scholar]
  17. DuttaT., MavkoG., MukerjiT. and LaneT.2009. Compaction trends for shale and clean sandstone in shallow sediments, Gulf of Mexico. The Leading Edge28, 590–596.
    [Google Scholar]
  18. FosterD.J., KeysR.G. and Lane, F.D.2010. Interpretation of AVO anomalies. Geophysics75, A3–A13.
    [Google Scholar]
  19. GassmannF.1951. Über die Elastizität poröser Medien. Vierteljahrs‐schrift der Naturforschenden Gesellschaft in Zürich96, 1–23.
    [Google Scholar]
  20. HashinZ. and ShtrikmanS.1963. A variational approach to the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids11, 127–140.
    [Google Scholar]
  21. HossainZ. and MacGregorL.2014. Advanced rock‐physics diagnostic analysis:A new method for cement quantification. The Leading Edge33, 310–316.
    [Google Scholar]
  22. MavkoG, MukerjiT. and DvorkinJ.2009. The Rock Physics Handbook, 2nd edn. Cambridge University Press: New York.
    [Google Scholar]
  23. MiddletonG.V.1973. Johannes Walther's Law of the Correlation of Facies. GSA Bulletin84, 979–988.
    [Google Scholar]
  24. MindlinR.D.1949. Compliance of elastic bodies in contact. Journal of Applied Mechanics16, 259‐268.
    [Google Scholar]
  25. MurphyW.FIII.1982. Effects of microstructure and porefluids on acoustic properties of granular sedimentary materials . Ph.D. thesis, Stanford University, USA.
  26. NagendraR. and ReddyN.A.2017. Major geologic events of Cauvery Basin, India and their correlation with global signatures‐A review. Journal of Paleogeography6, 69–83.
    [Google Scholar]
  27. ØdegaardE. and AvsethP.2004. Well log and seismic data analysis using rock physics template. First Break22, 37–43.
    [Google Scholar]
  28. PhayeD.K., NambiarM.V. and SrivastavaD.K.2011. Evaluation of Petroleum Systems of Ariyalur‐Pondicherry sub‐basin (Bhuvanagiri area) of Cauvery basin, India: A two dimensional (2‐D) basin modelling study. 2nd South Asian Geoscience Conference and Exhibition GEO India, Greater Noida, India, January 2011.
  29. PyeK. and KrinsleyD.H.1985. Formation of secondary porosity in sandsstones by quartz framework grain dissolution. Nature317, 54–56.
    [Google Scholar]
  30. RammM. and BjørlykkeK.1994. Porosity/Depth trends in reservoir sandstones: assessing the quantitative effects of varying pore‐pressure, temperature history and mineralogy, Norwegian Shelf data. Clay Minerals29, 475–490.
    [Google Scholar]
  31. RawatS., KaurA., TiwariS., KumarD., SunderamanS. and JaiswalS.2015. 2D PETROLEUM system modelling Tranquebar sub‐basin, Cauvery basin, 11th Biennial International Conference & Exposition, SPG, Jaipur, India.
  32. RichardsP.G. and FrasierC.W.1976. Scattering of elastic wave from depth‐dependent inhomogeneties. Geophysics41, 441–458.
    [Google Scholar]
  33. Roy MoulikS.K., Rana, M.S., ChandraS., MenonM., PrasadG.K., SharmaR., SinghJ.N. and DobriyalJ.P.2006. Sand Dispersal Pattern, Depositional Processes, Diagenesis and Hydrocarbon Prospectivity of Lower Cretaceous (Cenomanian‐Turonian) Bhuvanagiri Sandstone of Ariyalur‐Pondicherry Sub Basin, India. 6th International Conference & Exposition on Petroleum Geophysics, SPG, Kolkata, India, Expanded Abstract, 628–636.
  34. RutherfordS.R. and WilliamR.H.1989. Amplitude‐Versus‐Offset variations in gas sands. Geophysics54, 680–688.
    [Google Scholar]
  35. SastriV.V., VenkatachalaB.S. and NarayananV.1981. The evolution of east coast of India. Paleogeography, Paleoclimatology, Paleoecology36, 23–54.
    [Google Scholar]
  36. SinghaD. and ChatterjeeR.2017. Rock Physics Modeling in Sand Reservoir through Well Log Analysis, Krishna‐Godavari basin, India. Geomechanics and Engineering13, 99–117.
    [Google Scholar]
  37. SinghV., PramanikA.G., SrivastavaA.K. and PainulyP.K.2000. AVO Attribute Inversion as an Additional Tool for Reservoir Delineation, Improved Recovery Symposium (IRS) and Exhibition, Ahmedabad, India, paper id IRS2k_119, July 2000.
  38. SmithT., MC., SondergeldH. and RaiC.S.2003. Gassmann fluid substitutions: a tutorial. Geophysics68, 430–440.
    [Google Scholar]
  39. SrivastavaA.K., SinghV., VijayakumarV., SinghB. and GuptaS.K.2005. Identification and delineation of substratigraphic prospects by advanced interpretation tools: a case study. The Leading Edge24, 792–798.
    [Google Scholar]
  40. Walther, J., 1894. Einleitung in die Geologie als historische Wissenschaft. In Lithogenesis der Gegenwart. Jena: G.Fischer , Bd. 3, pp. 535–1055.
    [Google Scholar]
  41. WordenR.H. and BurleyS.D.2009. Sandstone Diagenesis: The Evolution of Sand to Stone. In: Sandstone Diagenesis: Recent and Ancient, Chapter 1, (eds S.D.Burley and R.H.Worden ). John Wiley and Sons.
    [Google Scholar]
  42. WygralaB.P.1989. Integrated study of an oil field in Southern Po Basin, Northern Italy . PhD thesis, University of Cologne, Germany.
  43. YangY. and AplinA.C.2007. Permeability and petrophysical properties of 30 natural mudstones. Journal of Geophysical Research112.
    [Google Scholar]
  44. ZoeppritzK.1919. Über Reflexion und Durchgang seismischer Wellen durch Unstetigkeitsflächen. Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch‐physikalische Klasse, 66–84.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12715
Loading
/content/journals/10.1111/1365-2478.12715
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): AVO; Diagenesis; Geohistory; Kamalapuram; Pore‐filling; Rock Physics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error