1887
Volume 31, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

High‐quality 3D seismic data are used to investigate the effect of the Parihaka Fault on the geometry of submarine channels in Northern Graben of the Taranaki Basin, New Zealand. The Parihaka Fault comprises of four segments (S1–S4) with variable displacements. As part of the Plio‐Pleistocene Giant Foresets Formation, the older Channel Complex Systems 1 and 2 reveal a two‐stage evolution: (a) a syn‐tectonic depositional stage with channels incising the slope during early fault growth (ca. 4.5 Ma) and (b) a stage of sediment bypass (ca. 3 Ma) leading to the infill of hanging‐wall depocentres. The Channel Complex System 3 is syn‐tectonic relative to segment S3 and was formed at ca. 2.5 Ma. We show that the successive generation of new fault segments towards the north controlled the formation of depocentres in the study area. This occurred in association to rotation and uplift of the footwall block of the Parihaka Fault and subsidence of its hanging‐wall block, with fault activity controlling the orientation of channel systems. As a result, we observe three drainage types in the study area: oblique, transverse and parallel to the Parihaka Fault. This work is important as it shows that relay zones separating the Parihaka Fault segments had limited influence on the geometry and location of channel systems. Submarine channels were diverted from their original courses close to the Parihaka Fault and flowed transversally to fault segments instead of running through relay ramps, contrasting to what is often recorded in the literature. A plausible explanation for such a discrepancy relates to rapid progradation of the Giant Foresets Formation during the Plio‐Pleistocene, with channel complexes becoming less confined, favouring footwall incision and basinward deposition of submarine fans.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12312
2018-09-23
2024-04-23
Loading full text...

Full text loading...

References

  1. Abreu, V., Sullivan, M., Pirmez, C., & Mohrig, D. (2003). Lateral accretion packages (LAPs): An important reservoir element in deep water sinuous channels. Marine and Petroleum Geology, 20(6–8), 631–648. https://doi.org/10.1016/j.marpetgeo.2003.08.003
    [Google Scholar]
  2. Anderson, J. E., Cartwright, J., Drysdall, S. J., & Vivian, N. (2000). Controls on turbidite sand deposition during gravity‐driven extension of a passive margin: Examples from Miocene sediments in Block 4, Angola. Marine and Petroleum Geology, 17, 1165–1203. https://doi.org/10.1016/S0264-8172(00)00059-3
    [Google Scholar]
  3. Arco Petroleum
    Arco Petroleum . (1992). Arawa‐1 Final Well Report PPL 38436, in Ministry of Economic Development, New Zealand: Crown Minerals Unpublished Petroleum Report, PR 1824.
  4. Armstrong, P. A., Chapman, D. S., Funnell, R. H., Allis, R. G., & Kamp, P. J. (1996). Thermal modeling and hydrocarbon generation in an active‐margin basin: Taranaki Basin, New Zealand. AAPG Bulletin, 80, 1216–1241.
    [Google Scholar]
  5. Athmer, W., Groenenberg, R. M., Luthi, S. M., Donselaar, M. E., Sokoutis, D., & Willingshofer, E. (2010). Relay ramps as pathways for turbidity currents: A study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57(3), 806–823. https://doi.org/10.1111/j.1365-3091.2009.01120.x
    [Google Scholar]
  6. Athmer, W., & Luthi, S. M. (2011). The effect of relay ramps on sediment routes and deposition: A review. Sedimentary Geology, 242, 1–17. https://doi.org/10.1016/j.sedgeo.2011.10.002
    [Google Scholar]
  7. Childs, C., Manzocchi, T., Walsh, J. J., Bonson, C. G., Nicol, A., & Schöpfer, M. P. (2009). A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31(2), 117–127. https://doi.org/10.1016/j.jsg.2008.08.009
    [Google Scholar]
  8. Clark, J. D., & Pickering, K. T. (1996). Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration. AAPG Bulletin, 80(2), 194–220.
    [Google Scholar]
  9. Crundwell, M. P., Beu, A. G., Morgans, H. E. G., Mildenhall, D. C., & Wilson, G. S. (2004). Chapter 12, Miocene. In R. A.Cooper (Ed.), The New Zealand geological timescale. GNS Science Report 2004/22 (p. 284).
    [Google Scholar]
  10. Deptuck, M. E., Steffens, G. S., Barton, M., & Pirmez, C. (2003). Architecture and evolution of upper fan channel‐belts on the Nger Delta slope and in the Arabian Sea. Marine and Petroleum Geology, 20(6), 649–676. https://doi.org/10.1016/j.marpetgeo.2003.01.004
    [Google Scholar]
  11. Eliet, P. P., & Gawthorpe, R. L. (1995). Drainage development and sediment supply within rifts, examples from the Sperchios basin, central Greece. Journal of the Geological Society, 152(5), 883–893. https://doi.org/10.1144/gsjgs.152.5.0883
    [Google Scholar]
  12. Fossen, H., & Rotevatn, A. (2016). Fault linkage and relay structures in extensional settings—A review. Earth‐Science Reviews, 154, 14–28. https://doi.org/10.1016/j.earscirev.2015.11.014
    [Google Scholar]
  13. Fugelli, E. M., & Olsen, T. R. (2007). Delineating confined slope turbidite systems offshore mid‐Norway: The Cretaceous deep‐marine Lysing Formation. AAPG Bulletin, 91(11), 1577–1601. https://doi.org/10.1306/07090706137
    [Google Scholar]
  14. Funnell, R., Chapman, D., Allis, R., & Armstrong, P. (1996). Thermal state of the Taranaki basin, New Zealand. Journal of Geophysical Research: Solid Earth, 101, 25197–25215. https://doi.org/10.1029/96JB01341
    [Google Scholar]
  15. Gamboa, D., Alves, T. M., & Cartwright, J. (2012). A submarine channel confluence classification for topographically confined slopes. Marine and Petroleum Geology, 35, 176–189. https://doi.org/10.1016/j.marpetgeo.2012.02.011
    [Google Scholar]
  16. Gawthorpe, R. L., & Hurst, J. (1993). Transfer zones in extensional basins: Their structural style and influence on drainage development and stratigraphy. Journal of the Geological Society, 150, 1137–1152. https://doi.org/10.1144/gsjgs.150.6.1137
    [Google Scholar]
  17. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218. https://doi.org/10.1046/j.1365-2117.2000.00121.x
    [Google Scholar]
  18. Ge, Z., Nemec, W., Gawthorpe, R. L., & Hansen, E. W. (2017). Response of unconfined turbidity current to normal‐fault topography. Sedimentology, 64(4), 932–959. https://doi.org/10.1111/sed.12333
    [Google Scholar]
  19. Ge, Z., Nemec, W., Gawthorpe, R. L., Rotevatn, A., & Hansen, E. W. (2018). Response of unconfined turbidity current to relay‐ramp topography: Insights from process‐based numerical modelling. Basin Research, 30(2), 321–343. https://doi.org/10.1111/bre.12255
    [Google Scholar]
  20. Gee, M., & Gawthorpe, R. (2006). Submarine channels controlled by salt tectonics: Examples from 3D seismic data offshore Angola. Marine and Petroleum Geology, 23, 443–458. https://doi.org/10.1016/j.marpetgeo.2006.01.002
    [Google Scholar]
  21. Gee, M., Gawthorpe, R., Bakke, K., & Friedmann, S. (2007). Seismic geomorphology and evolution of submarine channels from the Angolan continental margin. Journal of Sedimentary Research, 77, 433–446. https://doi.org/10.2110/jsr.2007.042
    [Google Scholar]
  22. Giba, M., Nicol, A., & Walsh, J. (2010). Evolution of faulting and volcanism in a back‐arc basin and its implications for subduction processes. Tectonics, 29, TC4020. https://doi.org/10.1029/2009TC002634
    [Google Scholar]
  23. Giba, M., Walsh, J. J., & Nicol, A. (2012). Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural Geology, 39, 253–267. https://doi.org/10.1016/j.jsg.2012.01.004
    [Google Scholar]
  24. Gibbs, A. D. (1989). Structural styles in basin formation. In A. J.Tankard & H. R.Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic Margins, vol 46, (pp. 81–94). Tulsa, OK: AAPG Memoir.
    [Google Scholar]
  25. Gupta, S., Underhill, J., Sharp, I., & Gawthorpe, R. (1999). Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Research, 11, 167–189. https://doi.org/10.1046/j.1365-2117.1999.00300.x
    [Google Scholar]
  26. Hansen, R. J., & Kamp, P. J. (2002). Evolution of the Giant foresets formation. Northern Taranaki Basin, New Zealand, Proceedings of New Zealand Petroleum Conference 2002, 24–27 February, Crown Minerals, Ministry of Economic Development, Wellington.
  27. Hansen, R. J., & Kamp, P. J. (2004a). Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin. New Zealand Journal of Geology and Geophysics, 47, 645–662. https://doi.org/10.1080/00288306.2004.9515081
    [Google Scholar]
  28. Hansen, R. J., & Kamp, P. J. (2004b). Rapid progradation of the Pliocene‐Pleistocene continental margin, northern Taranaki Basin, New Zealand, and implications, Proceedings of New Zealand Petroleum Conference, 7–10.
  29. Henstra, G. A., Gawthorpe, R. L., Helland‐Hansen, W., Ravnås, R., & Rotevatn, A. (2016). Depositional systems in multiphase rifts: Seismic case study from the Lofoten margin, Norway. Basin Research, 29(4), 447–469. https://doi.org/10.1111/bre.12183
    [Google Scholar]
  30. Holt, W., & Stern, T. (1991). Sediment loading on the western platform of the New Zealand continent: Implications for the strength of a continental margin. Earth and Planetary Science Letters, 107, 523–538. https://doi.org/10.1016/0012-821X(91)90098-3
    [Google Scholar]
  31. Holt, W., & Stern, T. (1994). Subduction, platform subsidence, and foreland thrust loading: The late Tertiary development of Taranaki Basin, New Zealand. Tectonics, 13, 1068–1092. https://doi.org/10.1029/94TC00454
    [Google Scholar]
  32. Hopkins, M. C., & Dawers, N. H. (2018). The role of fault length, overlap and spacing in controlling extensional relay ramp fluvial system geometry. Basin Research, 30(1), 20–34. https://doi.org/10.1111/bre.12240
    [Google Scholar]
  33. Hubbard, S. M., Covault, J. A., Fildani, A., & Romans, B. W. (2014). Sediment transfer and deposition in slope channels: Deciphering the record of enigmatic deep‐sea processes from outcrop. Bulletin, 126(5–6), 857–871.
    [Google Scholar]
  34. Kamp, P. J., Vonk, A. J., Bland, K. J., Hansen, R. J., Hendy, A. J., McIntyre, A. P., … Nelson, C. S. (2004). Neogene stratigraphic architecture and tectonic evolution of Wanganui, King Country, and eastern Taranaki Basins, New Zealand. New Zealand Journal of Geology and Geophysics, 47, 625–644. https://doi.org/10.1080/00288306.2004.9515080
    [Google Scholar]
  35. Kamp, P. J., Vonk, A. J., Nelson, C. S., Hansen, R. J., Tripathi, A. R. P., Hood, S. D., … Hendy, A. J. (2004). Constraints on the evolution of Taranaki Fault from thermochronology and basin analysis: Implications for the Taranaki Fault play.
  36. King, P. R. (2000). Tectonic reconstructions of New Zealand: 40 Ma to the present. New Zealand Journal of Geology and Geophysics, 43, 611–638. https://doi.org/10.1080/00288306.2000.9514913
    [Google Scholar]
  37. King, P. R., & Thrasher, G. P. (1996). Cretaceous Cenozoic geology and petroleum systems of the Taranaki Basin. In Institute of Geological & Nuclear Sciences monograph 13 1 CD. Lower Hutt, New Zealand: GNS Science.
    [Google Scholar]
  38. Lee, R. F. (2001). Pitfalls in seismic data flattening. The Leading Edge, 20(2), 160–164. https://doi.org/10.1190/1.1438896
    [Google Scholar]
  39. Leeder, M., & Gawthorpe, R. (1987). Sedimentary models for extensional tilt‐block/half‐graben basins. Geological Society, London, Special Publications, 28, 139–152. https://doi.org/10.1144/GSL.SP.1987.028.01.11
    [Google Scholar]
  40. Lomask, J. (2003). Flattening 3‐D data cubes in complex geology. Stanford Exploration Project, Report, 113, 247–261.
    [Google Scholar]
  41. Long, J. J., & Imber, J. (2011). Geological controls on fault relay zone scaling. Journal of Structural Geology, 33(12), 1790–1800. https://doi.org/10.1016/j.jsg.2011.09.011
    [Google Scholar]
  42. Mayall, M., Jones, E., & Casey, M. (2006). Turbidite channel reservoirs—Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8), 821–841. https://doi.org/10.1016/j.marpetgeo.2006.08.001
    [Google Scholar]
  43. Morgan, R. (2004). Structural controls on the positioning of submarine channels on the lower slopes of the Niger Delta. Geological Society, London, Memoirs, 29(1), 45–52. https://doi.org/10.1144/GSL.MEM.2004.029.01.05
    [Google Scholar]
  44. Morgans, H. E. G. (2006). Foraminiferal Biostratigraphy of the Early Miocene to Pleistocene Sequences in Witiora‐1, Taimana‐1, Arawa‐1 and Okoki‐1. GNS Science Report 2006/37 (p. 37). Lower Hutt, New Zealand: GNS Science.
    [Google Scholar]
  45. Mulrooney, M. J., Rismyhr, B., Yenwongfai, H. D., Leutscher, J., Olaussen, S., & Braathen, A. (2018). Impacts of small‐scale faults on continental to coastal plain deposition: Evidence from the Realgrunnen Subgroup in the Goliat field, southwest Barents Sea, Norway. Marine and Petroleum Geology, 95, 276–302. https://doi.org/10.1016/j.marpetgeo.2018.04.023
    [Google Scholar]
  46. Neall, V., Stewart, R., & Smith, I. (1986). History and petrology of the Taranaki volcanoes. Royal Society of New Zealand Bulletin, 23, 251–263.
    [Google Scholar]
  47. Nicol, A., Stagpoole, V., & Maslen, G. (2004). Structure and petroleum potential of the Taranaki fault play, New Zealand Petroleum Conference Proceedings. 7–10.
  48. Nicol, A., Walsh, J., Berryman, K., & Nodder, S. (2005). Growth of a normal fault by the accumulation of slip over millions of years. Journal of Structural Geology, 27, 327–342. https://doi.org/10.1016/j.jsg.2004.09.002
    [Google Scholar]
  49. Nodder, S. D. (1993). Neotectonics of the offshore Cape Egmont Fault Zone, Taranaki Basin, New Zealand. New Zealand Journal of Geology and Geophysics, 36, 167–184. https://doi.org/10.1080/00288306.1993.9514566
    [Google Scholar]
  50. Paul, D., & Mitra, S. (2013). Experimental models of transfer zones in rift systems. AAPG Bulletin, 97(5), 759–780. https://doi.org/10.1306/10161212105
    [Google Scholar]
  51. Peacock, D. C. P., Knipe, R. J., & Sanderson, D. J. (2000). Glossary of normal faults. Journal of Structural Geology, 22(3), 291–305. https://doi.org/10.1016/S0191-8141(00)80102-9
    [Google Scholar]
  52. Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13(6), 721–733. https://doi.org/10.1016/0191-8141(91)90033-F
    [Google Scholar]
  53. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73(3), 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  54. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift‐basin successions. AAPG Bulletin, 82(8), 1626.
    [Google Scholar]
  55. Rotevatn, A., Fossen, H., Hesthammer, J., Aas, T. E., & Howell, J. A. (2007). Are relay ramps conduits for fluid flow? Structural analysis of a relay ramp in Arches National Park, Utah. Geological Society, London, Special Publications, 270(1), 55–71. https://doi.org/10.1144/GSL.SP.2007.270.01.04
    [Google Scholar]
  56. Salazar, M., Moscardelli, L., & Wood, L. (2016). Utilising clinoform architecture to understand the drivers of basin margin evolution: A case study in the Taranaki Basin, New Zealand. Basin Research, 28, 840–865. https://doi.org/10.1111/bre.12138
    [Google Scholar]
  57. Soreghan, M. J., Scholz, C. A., & Wells, J. T. (1999). Coarse‐grained, deep‐water sedimentation along a border fault margin of Lake Malawi, Africa; seismic stratigraphic analysis. Journal of Sedimentary Research, 69(4), 832–846. https://doi.org/10.2110/jsr.69.832
    [Google Scholar]
  58. Spencer, C. W. (1987). Hydrocarbon generation as a mechanism for overpressuring in Rocky Mountain region. AAPG Bulletin, 71, 368–388.
    [Google Scholar]
  59. Stagpoole, V., & Funnell, R. (2001). Arc magmatism and hydrocarbon generation in the northern Taranaki Basin, New Zealand. Petroleum Geoscience, 7, 255–267. https://doi.org/10.1144/petgeo.7.3.255
    [Google Scholar]
  60. Stagpoole, V., & Nicol, A. (2008). Regional structure and kinematic history of a large subduction back thrust: Taranaki Fault, New Zealand. Journal of Geophysical Research: Solid Earth, 113(B1). https://doi.org/10.1029/2007JB005170
    [Google Scholar]
  61. Walsh, J., Bailey, W., Childs, C., Nicol, A., & Bonson, C. (2003). Formation of segmented normal faults: A 3‐D perspective. Journal of Structural Geology, 25, 1251–1262. https://doi.org/10.1016/S0191-8141(02)00161-X
    [Google Scholar]
  62. Webster, M., O'Connor, S., Pindar, B., & Swarbrick, R. (2011). Overpressures in the Taranaki Basin: Distribution, causes, and implications for exploration. AAPG Bulletin, 95, 339–370. https://doi.org/10.1306/06301009149
    [Google Scholar]
  63. Young, M. J., Gawthorpe, R. L., & Hardy, S. (2001). Growth and linkage of a segmented normal fault zone; the Late Jurassic Murchison‐Statfjord North Fault, northern North Sea. Journal of Structural Geology, 23(12), 1933–1952. https://doi.org/10.1016/S0191-8141(01)00038-4
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12312
Loading
/content/journals/10.1111/bre.12312
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error