1887
Volume 31, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Measurement of dispersed vitrinite reflectance in organic sediments is one of the few regional data sets used for placing bounds on the thermal history of a sedimentary basin. Reflectance data are important when access to complementary information such as high‐quality seismic data is unavailable to place bounds on subsidence history and in locations where uplift is an important part of the basin history. Attributes which make vitrinite reflectance measurements a useful data set are the relative ease of making the measurement, and the availability of archived well cores and cuttings in state, provincial, and federal facilities. In order to fully utilize vitrinite data for estimating the temperature history in a basin, physically based methods are required to calibrate an equivalent reflectance from a modelled temperature history with measured data. The most common method for calculating a numerical vitrinite reflectance from temperature history is the EASY%R method which we show systematically underestimates measured data. We present a new calculated reflectance model and an adjustment to EASY%R which makes the correlation between measured vitrinite values and calculated vitrinite values a physical relationship and more useful for constraining thermal models. We then show that calibrating the thermal history to vitrinite on a constant age date surface (e.g., top Cretaceous) instead of calibrating the thermal history in depth removes the heating rate component from the reflectance calculation and makes thermal history calibration easier to understand and more directly related to heat flow. Finally, we use bounds on the vitrinite–temperature relationships on a constant age date surface to show that significant uncertainty exists in the vitrinite data reported in most data sets.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12317
2018-11-22
2024-04-25
Loading full text...

Full text loading...

References

  1. Barker, C. E. (1989). Temperature and time in the thermal maturation of sedimentary organic matter. In N. D.Naesser & T.McCulloch (Eds.), Thermal history of sedimentary basins (pp. 73–98). New York, NY: Springer.
    [Google Scholar]
  2. Blackwell, D., & Richards, M. (2004). Calibration of the AAPG geothermal survey of North America bht data base. https://www.smu.edu/~/media/Site/Dedman/Academics/Programs/Geothermal
  3. Blackwell, D. D., & Steele, J. L. (1989). Thermal conductivity of sedimentary rocks: Measurement and significance. In N. D.Naesser & T.McCulloch (Eds.), Thermal history of sedimentary basins (pp. 13–36). New York, NY: Springer.
    [Google Scholar]
  4. Burnham, A. K., & Sweeney, J. J. (1989). A chemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta, 53, 2649–2657. https://doi.org/10.1016/0016-7037(89)90136-1
    [Google Scholar]
  5. Crowell, A. M., Ochsner, A. T., & Gosnold, W. (2012). Correcting bottom‐hole temperatures in the Denver Basin: Colorado and Nebraska. GRC Transactions, 36, 201–206.
    [Google Scholar]
  6. Dow, W. G. (1977). Kerogen studies and geological interpretations. Journal of Geochemical Exploration, 7, 79–99. https://doi.org/10.1016/0375-6742(77)90078-4
    [Google Scholar]
  7. Fang, H., & Jianyu, C. (1992). The cause and mechanism of vitrinite reflectance anomalies. Journal of Petroleum Geology, 15, 419–434. https://doi.org/10.1111/j.1747-5457.1992.tb01043.x
    [Google Scholar]
  8. Fleisher, R. L., & Lane, H. R. (1999). Treatise of petroleum geology/handbook of petroleum geology: Exploring for oil and gas traps. Chapter 17: Applied paleontology: AAPG Bulletin.
  9. Galton, F. (1907). Vox populi (the wisdom of crowds). Nature, 75, 450–451. https://doi.org/10.1038/075450a0
    [Google Scholar]
  10. Goodarzi, F., & Murchison, D. G. (1973). Oxidized vitrinites – their aromaticity, optical properties and possible detection. Fuel, 52, 90–92. https://doi.org/10.1016/0016-2361(73)90027-6
    [Google Scholar]
  11. Gosnold, W. (2011). The global heat flow database of the international heat flow commission. http://www.heatflow.und.edu/index2.html
  12. Goutorbe, B., Lucazeau, F., & Bonneville, A. (2007). Comparison of several bht correction methods: A case study on an Australian data set. Geophysical Journal International, 170, 913–922. https://doi.org/10.1111/j.1365-246X.2007.03403.x
    [Google Scholar]
  13. Hackley, P. C., Araujo, C. V., Borrego, A. G., Bouzinos, A., Cardott, B. J., Cook, A. C., … Goncalves, P. A. (2015). Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement. Marine and Petroleum Geology, 59, 22–34. https://doi.org/10.1016/j.marpetgeo.2014.07.015
    [Google Scholar]
  14. Hackley, P. C., & Cardott, B. J. (2016). Application of organic petrography in North American shale petroleum systems: A review. International Journal of Coal Geology, 163, 8–51. https://doi.org/10.1016/j.coal.2016.06.010
    [Google Scholar]
  15. Hantschel, T., & Kauerauf, A. I. (2009). Fundamentals of basin and petroleum systems modeling (p. 476). Berlin, Germany: Springer Science & Business Media.
    [Google Scholar]
  16. Harrison, W. E., Luza, K. V., Prater, M. L., Cheung, P. K., & Ruscetta, C. (1983). Geothermal resource assessment in Oklahoma. Technical Report. Norman, OK: Oklahoma Geological Survey (Special Publication 83‐1).
    [Google Scholar]
  17. Horner, D. E. (1951). Pressure build‐up in wells. In Proceedings of the third world oil congress, world petroleum congress , The Hague, pp. 25–43.
    [Google Scholar]
  18. Jarvie, D. M., Hill, R. J., & Pollastro, R. M. (2005). Assessment of the gas potential and yields from shales: The Barnett Shale model. Oklahoma Geological Survey Circular, 110, 37–50.
    [Google Scholar]
  19. Kalkreuth, W., Sherwood, N., Cioccari, G., da Silva, Z. C., Silva, M., Zhong, N., & Zufa, L. (2004). The application of famm (fluorescence alteration of multiple macerals) analyses for evaluating rank of Paraná Basin Coals, Brazil. International Journal of Coal Geology, 57, 167–185. https://doi.org/10.1016/j.coal.2003.12.001
    [Google Scholar]
  20. Katz, B., Pheifer, R., & Schunk, D. (1988). Interpretation of discontinuous vitrinite reflectance profiles. AAPG Bulletin, 72, 926–931.
    [Google Scholar]
  21. Malinconico, M. L. (2000). Using reflectance crossplots and rotational polarization for determining first‐cycle vitrinite for maturation studies. International Journal of Coal Geology, 43, 105–120. https://doi.org/10.1016/S0166-5162(99)00056-7
    [Google Scholar]
  22. McKenna, J., & Blackwell, D. (2005). 3‐d multiphysics modeling of a producing hydrocarbon field. http://www.dtic.mil/dtic/tr/fulltext/u2/a592620.pdf (Proceedings of the COMSOL Multiphysics Users Conference).
  23. Mukhopadhyay, P. K. (2014). The implication of maturation and heat flow analysis for conventional (deepwater) and unconventional (shale oil and shale gas) petroleum systems: Evolution through the last 50 years. Dallas, TX: AAPG Annual Meeting, paper, 87616.
    [Google Scholar]
  24. Peters, K. E., & Nelson, P. H. (2012). Criteria to determine borehole formation temperatures for calibration of basin and petroleum system models. SEPM Special Publication, 103, 5–15.
    [Google Scholar]
  25. Poole, F. G., & Claypool, R. E. (1984). Petroleum source‐rock potential and crude‐oil correlation in the great basin. In J.Woodward , F. F.Meisner , & J. L.Clayton (Eds.), Hydrocarbon source rocks of the greater Rocky Mountain region (pp. 179–229). Denver, CO: Rocky Mountain Association of Geologists.
    [Google Scholar]
  26. Price, L. C., & Barker, C. E. (1985). Suppression of vitrinite reflectance in amorphous rich kerogen–a major unrecognized problem. Journal of Petroleum Geology, 8, 59–84. https://doi.org/10.1111/j.1747-5457.1985.tb00191.x
    [Google Scholar]
  27. Rejebian, V. A., Harris, A. G., & Huebner, J. S. (1987). Conodont color and textural alteration: An index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Geological Society of America Bulletin, 99, 471–479. https://doi.org/10.1130/0016-7606(1987)99%3c471:CCATAA%3e2.0.CO;2
    [Google Scholar]
  28. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1). AAPG Bulletin, 74, 1559–1570.
    [Google Scholar]
  29. Thompson‐Rizer, C. L., & Woods, R. A. (1987). Microspectrofluorescence measurements of coals and petroleum source rocks. International Journal of Coal Geology, 7, 85–104. https://doi.org/10.1016/0166-5162(87)90014-0
    [Google Scholar]
  30. Tissot, B., & Espitalie, J. (1975). Thermal evolution of organic‐matter in sediments‐application of a mathematical simulation‐petroleum potential of sedimentary basins and reconstructing thermal history of sediments. Revue De L Institut Francais Du Petrole, 30, 743–777. https://doi.org/10.2516/ogst:1975026
    [Google Scholar]
  31. Veld, H., Wilkins, R., Xianming, X., & Buckingham, C. (1997). A fluorescence alteration of multiple macerals (famm) study of Netherlands coals with normal and deviating vitrinite reflectance. Organic Geochemistry, 26, 247–255. https://doi.org/10.1016/S0146-6380(96)00156-8
    [Google Scholar]
  32. Wilkins, R., Sherwood, N., Faiz, M., Teerman, S., & Buckingham, C. (1997). The application of fluorescence alteration of multiple macerals (famm) for petroleum exploration in SE Asia and Australasia. Proceedings of an International Conference on Petroleum Systems of SE Asia and Australasia, Indonesian Petroleum Association, 923–938.
  33. Wilkins, R. W., Wilmshurst, J. R., Russell, N. J., Hladky, G., Ellacott, M. V., & Bucking‐ham, C. (1992). Fluorescence alteration and the suppression of vitrinite reflectance. Organic Geochemistry, 18, 629–640. https://doi.org/10.1016/0146-6380(92)90088-F
    [Google Scholar]
  34. Wood, D. A. (1988). Relationships between thermal maturity indices calculated using Arrhenius equation and Lopatin method: Implications for petroleum exploration. AAPG Bulletin, 72, 115–134.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12317
Loading
/content/journals/10.1111/bre.12317
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error