1887
Volume 31, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The Eastern Mediterranean Levant Basin is a proven hydrocarbon province with recent major gas discoveries. To date, no exploration wells targeted its northern part, in particular the Lebanese offshore. The present study assesses the tectono‐stratigraphic evolution and related petroleum systems of the northern Levant Basin via an integrated approach that combines stratigraphic forward modeling and petroleum systems/basin modeling based on the previous published work. Stratigraphic modeling results provide a best‐fit realisation of the basin‐scale sedimentary filling, from the post‐rift Upper Jurassic until the Pliocene. Simulation results suggest dominant eastern marginal and Arabian Plate sources for Cenozoic siliciclastic sediments and a significant contribution from the southern Nilotic source mostly from Lower Oligocene to Lower Miocene. Basin modeling results suggest the presence of a working thermogenic petroleum system with mature source rocks localised in the deeper offshore. The generated hydrocarbons migrated through the deep basin within Jurassic and Cretaceous permeable layers towards the Latakia Ridge in the north and the Levant margin and offshore topographic highs. Furthermore, the basin model indicates a possibly significant influence of salt deposition during Messinian salinity crisis on formation fluids. Ultimately, the proposed integrated workflow provides a powerful tool for the assessment of petroleum systems in underexplored areas.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12318
2018-12-13
2024-04-24
Loading full text...

Full text loading...

References

  1. Al‐Balushi, A. N., Neumaier, M., Fraser, A. J., & Jackson, C.‐A.‐L. (2016). The impact of the Messinian salinity crisis on the petroleum system of the Eastern Mediterranean: A critical assessment using 2D petroleum system modelling. Petroleum Geoscience, 22, 357–379. https://doi.org/10.1144/petgeo2016-054
    [Google Scholar]
  2. Avni, Y., Segev, A., & Ginat, H. (2012). Oligocene regional denudation of the northern Afar dome: Pre and syn‐breakup stages of the Afro‐Arabian plate. Geological Society of America Bulletin, 124, 1871–1897. https://doi.org/10.1130/B30634.1
    [Google Scholar]
  3. Bache, F., Popescu, S.‐M., Rabineau, M., Gorini, C., Suc, J.‐P., Clauzon, G., … Çakır, Z. (2012). A two‐step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Research, 24, 125–153. https://doi.org/10.1111/j.1365-2117.2011.00521.x
    [Google Scholar]
  4. Bar, O., Gvirtzman, Z., Feinstein, S., & Zilberman, E. (2013). Accelerated subsidence and sedimentation in the Levant Basin during the late tertiary and concurrent uplift of the Arabian platform: Tectonic versus counteracting sedimentary loading effects. Tectonics, 32, 334–350. https://doi.org/10.1002/tect.20026
    [Google Scholar]
  5. Barrier, E., Vrielynck, B., Brouillet, J. F., & Brunet, M. F. (Contributors : Angiolini L., Kaveh F., Poisson A., Pourteau A., Plunder A., Robertson A., Shekawat R., Sosson M. AND Zanchi A.) (2018). Paleotectonic reconstruction of the central tethyan realm. tectonono‐sedimentary‐palinspastic maps from late Permian to Pliocene. Paris: France: CCGM/CGMW. https://www.ccgm.org. Atlas of 20 maps (scale: 1/15 000 000).
  6. Bartov, J., Eyal, Y., Garfunkel, Z., & Steinitz, G. (1972). Late cretaceous and tertiary Stratigraphy and Paleogeography of Southern Israel. Israel Journal of Earth‐Sciences, 21, 69–97.
    [Google Scholar]
  7. Ben‐Avraham, Z., Ginzburg, A., Markis, J., & Eppelbaum, L. (2002). Crustal structure of the Levant Basin, eastern Mediterranean. Tectonophysica, 346(1–2), 23–43. https://doi.org/10.1016/S0040-1951(01)00226-8
    [Google Scholar]
  8. Bertoni, C., & Cartwright, J. A. (2007). Major erosion at the end of the Messinian salinity crisis: Evidence from the Levant Basin, Eastern Mediterranean. Basin Research, 19, 1–18. https://doi.org/10.1111/j.1365-2117.2006.00309.x
    [Google Scholar]
  9. Beydoun, Z. R. (1977). Petroleum prospects of Lebanon: Re‐evaluation. AAPG Bulletin, 61, 1, 43‐64.
  10. Beydoun, Z. R., & Habib, J. G. (1995). Lebanon revisited: New insights into Triassic hydrocarbon prospects. Journal of Petroleum Geology, 18(1), 75–90. https://doi.org/10.1111/j.1747-5457.1995.tb00742.x
    [Google Scholar]
  11. Bosworth, W., Guiraud, R., & Kessler, L. G. (1999). Late Cretaceous (ca. 84 Ma) compressive deformation of the stable platform of northeast Africa (Egypt): Far‐field stress effects of the “Santonian event” and origin of the Syrian arc deformation belt. Geology, 27(7), 633–636. https://doi.org/10.1130/0091-7613(1999)027aabbb0633:LCCMCDaaabb2.3.CO;2
    [Google Scholar]
  12. Bou Daher, S., Ducros, M., Michel, P., Hawie, N., Nader, F. H., & Littke, R. (2016). 3D thermal history and maturity modelling of the Levant Basin and its eastern margin, offshore–onshore Lebanon. Arabian Journal of Geosciences, 9(6), https://doi.org/10.1007/s12517-016-2455-1
    [Google Scholar]
  13. Bou Daher, S., Nader, F. H., Müller, C., & Littke, R. (2015). Geochemical and petrographic characterization of Campanian – Lower Maastrichtian calcareous petroleum source rocks of Hasbayya, South Lebanon. Marine and Petroleum Geology, 64, 304–323. https://doi.org/10.1016/j.marpetgeo.2015.03.009
    [Google Scholar]
  14. Bou Daher, U., Nader, F. H., Strauss, H., & Littke, R. (2014). Depositional environment and source‐rock characterization of organic‐matter rich upper Santonian – upper Campanian carbonates, northern Lebanon. Journal of Petroleum Geology, 37, 5–24.
    [Google Scholar]
  15. Brew, G., Barazangi, M., & Khaled Al‐Maleh, A. & Sawaf, T. (2001). Tectonic and geologic evolution of Syria. GeoArabia, 6(4), 573–616.
    [Google Scholar]
  16. Burgess, P., Lammers, H., van Oosterhout, C., & Granjeon, D. (2006). Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG Bulletin, 90, 1883–1901. https://doi.org/10.1306/06260605081
    [Google Scholar]
  17. Dai, A., & Trenberth, K. E. (2002). Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. Journal of Hydrometeorology, 3, 660–687. https://doi.org/10.1175/1525-7541(2002)003aabbb0660:EOFDFCaaabb2.0.CO;2
    [Google Scholar]
  18. Dolson, J. C., Boucher, P. J., Siok, J., & Heppard, P. D. (2005).Key challenges to realizing full potential in an emerging giant gas province: Nile Delta/ Mediterranean offshore, deepwater, Egypt. In A. G.Doré & B. A.Vining (Eds.), Petroleum Geology: North‐West Europe and Global Perspectives—Proceedings of the 6th Petroleum Geology Conference (pp. 607–624). Petroleum Geology Conferences Ltd. London, UK: The Geological Society.
    [Google Scholar]
  19. Dubertret, L. (1955). Carte géologique du Liban au 1/200000 avec notice explicative (p. 74). Beirut, Lebanon: République Libanaise, Ministère des Travaux Publiques.
    [Google Scholar]
  20. Eruteya, O. E., Waldmann, N., Schalev, D., Makovsky, Y., & Ben‐Avraham, Z. (2015). Intra‐ to post‐Messinian deep‐water gas piping in the Levant Basin, SE Mediterranean, Marine and Petroleum Geology. Marine and Petroleum Geology, 66, 246–261. https://doi.org/10.1016/j.marpetgeo.2015.03.007
    [Google Scholar]
  21. Frizon de Lamotte, D., Raulin, C., Mouchot, N., Wrobel‐Daveau, J.‐C., Blanpied, C., & Ringenbach, J.‐C. (2011). The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics, 30(3), TC3002. https://doi.org/10.1029/2010TC002691
    [Google Scholar]
  22. Gardosh, M. A., Druckman, Y., Buchbinder, B., & Rybakov, M. (2006). The Levant Basin offshore Israel: Stratigraphy, structure, tectonic evolution and implications for hydrocarbon exploration. Geophysical Institute of Israel, Report, 1–119.
  23. Gardosh, M. A., Druckman, Y., Buchbinder, B., & RybakovM., (2008). The Levant Basin offshore Israel: Stratigraphy, structure, tectonic evolution and implications for hydrocarbon exploration ‐ revised edition. Geological Survey of Israel Report GSI/4/2008, 1–119.
  24. Gardosh, M. A., Garfunkel, Z., Druckman, Y., & Buchbinder, B. (2010). Tethyan rifting in the Levant Region and its role in Early Mesozoic crustal evolution. Geological Society London, Special Publications, 341, 9–36. https://doi.org/10.1144/SP341.2
    [Google Scholar]
  25. Garfunkel, Z., Zak, I., & Freund, R. (1981). Active faulting in the Dead Sea Rift. Tectonophysics, 80, 126. https://doi.org/10.1016/0040-1951(81)90139-6
    [Google Scholar]
  26. Ghalayini, R., Daniel, J.‐M., Homberg, C., Nader, F. H., & Comstock, J. E. (2014). Impact of Cenozoic strike‐slip tectonics on the evolution of the northern Levant Basin (offshore Lebanon). Tectonics, 33(11), 2121–2142. https://doi.org/10.1002/2014TC003574
    [Google Scholar]
  27. Ghalayini, R., Homberg, C., Daniel, J. M., & Nader, F. H. (2017). Growth of layer‐bound normal faults under a regional anisotropic stress field. Geological Society, London, Special Publications, 439(1), 57. https://doi.org/10.1144/SP439.13
    [Google Scholar]
  28. Ghalayini, R., Nader, F. H., Bou Daher, S., Hawie, N., & Chbat, W. E. (2018). Petroleum systems of Lebanon: An update and review. Journal of Petroleum Geology, 41(2), 189–214. https://doi.org/10.1111/jpg.12700
    [Google Scholar]
  29. Ghalayini, R. (2015) Structural modelling of the complex Cenozoic zone of the Levant Basin offshore Lebanon. Earth Sciences. Université Pierre et Marie Curie ‐ Paris VI, 2015. English.
  30. Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3‐D multiple lithology, diffusive model in stratigraphic modeling. Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. SEPM Special Publications, 62, 197–210.
    [Google Scholar]
  31. Guiraud, R., & Bosworth, W. (1997). Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: Synthesis and implications to plate‐scale tectonics. Tectonophysics, 282(1–4), 39–82. https://doi.org/10.1016/S0040-1951(97)00212-6
    [Google Scholar]
  32. Gvirtzman, Z., Csato, I., & Granjeon, D. (2014). Constraining sediment transport to deep marine basins through submarine channels: The Levant margin in Late Cenozoic. Marine Geology, 347, 12–26.
    [Google Scholar]
  33. Haas, J. L. (1997). An empirical equation with tables of smoothed solubilities of methane in water and aqueous sodium chloride solutions up to 25 weight percent, 360°C, and 138 MPa. U.S. Geological Survey, Open‐file, report, 78–1004.
  34. Hall, J., Calon, T. J., Aksu, A. E., & Meade, S. R. (2005). Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, Eastern Mediterranean Sea. Marine Geology, 221, 261–297. https://doi.org/10.1016/j.margeo.2005.03.007
    [Google Scholar]
  35. Haq, B. U., Hardenbohl, J., & Vail, P. R. (1988). Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. SEPM Special Publications, 42, 71–108.
    [Google Scholar]
  36. Hawie, N., Deschamps, R., Granjeon, D., Nader, F. H., Gorini, C., Müller, C., … Baudin, F. (2015). Multi‐scale constraints of sediment source to sink systems in frontier basins : A forward stratigraphic modelling case study of the Levant region. Basin Research, 29, 418–445. https://doi.org/10.1111/bre.12156
    [Google Scholar]
  37. Hawie, N., Deschamps, R., Nader, F. H., Gorini, C., Müller, C., Desmares, D., … Baudin, F. (2013). Sedimentological and stratigraphic evolution of northern Lebanon since the Late Cretaceous: Implications for the Levant margin and basin. Arabian Journal of Geoscience, 7(4), 1323–1349.
    [Google Scholar]
  38. Hawie, N., Gorini, C., Deschamps, R., Nader, F. H., Montadert, L., Grajeon, D., & Baudin, F. (2013). Tectono‐stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Marine and Petroleum Geology, 48, 392–410.
    [Google Scholar]
  39. Hawie, N. (2014). Architecture, geodynamic evolution and sedimentary filling of the levant basin: a 3D quantitative approach based on seismic data. Earth Sciences. Université Pierre et Marie Curie ‐ Paris VI. English
  40. Homberg, C., & Bachmann, M. (2010). Evolution of the Levant margin and Western Arabia platform since the Mesozoic. Geological Society, London, Special Publications, 2010(341), 9–36.
    [Google Scholar]
  41. Hsü, K. J., Montadert, L., Bernoulli, D., Cita, M. B., Erickson, A., Garrison, R. E., … Wright, R. (1977). History of the Mediterranean salinity crisis. Nature, 267, 399. https://doi.org/10.1038/267399a0
    [Google Scholar]
  42. Hsü, K. J., Ryan, W. B. F., & Cita, M. B. (1973). Late Miocene desiccation of the Mediterranean. Nature, 242, 240–244. https://doi.org/10.1038/242240a0
    [Google Scholar]
  43. Inati, L., Zeyen, H., Nader, F. H., Adelinet, M., Sursock, A., Rahhal, M. E., & Roure, F. (2016). Lithospheric architecture of the Levant basin (eastern mediterranean region): A 2D modeling approach. Tectonophysics, 693, 143–156. https://doi.org/10.1016/j.tecto.2016.10.030
    [Google Scholar]
  44. Lazar, M., Schattner, U., & Reshef, M. (2012). The great escape: An intra‐Messinian gas system in the eastern Mediterranean. Geophysical Research Letters, 39, L20309.
    [Google Scholar]
  45. Macgregor, D. S. (2012). The development of the Nile drainage system: Integration of onshore and offshore evidence. Petroleum Geoscience, 18, 417–431. https://doi.org/10.1144/petgeo2011-074
    [Google Scholar]
  46. Marlow, L., Kornphil, K., & Kendall, C. G. S. T. C. (2011). 2‐D Basin modeling study of petroleum systems in the Levantine Basin, Eastern Mediterranean. Geoarabia, 16(2), 17–42.
    [Google Scholar]
  47. Meilijson, A., Ashckenazi‐Polivoda, S., Illner, P., Speijer, R. P., Almogi‐Labin, A., Feinstein, S., … Abramovich, S. (2018). From phytoplankton to oil shale reservoirs: A 19‐million‐year record of the Late Cretaceous Tethyan upwelling regime in the Levant Basin. Marine and Petroleum Geology, 95, 188–205. https://doi.org/10.1016/j.marpetgeo.2018.04.012
    [Google Scholar]
  48. Milliman, J. D., & Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. Journal of Geology, 100, 525–544. https://doi.org/10.1086/629606
    [Google Scholar]
  49. Montadert, L., Nicolaides, S., Semb, P. H., & Lie, Ø. (2011). Petroleum systems offshore cyprus. In L.Marlow , C.Kendall & L.Yose (Eds.), Petroleum systems of the Tethyan region, Vol. 106 (pp. 301–334). Tulsa, OK: AAPG Memoir.
    [Google Scholar]
  50. Müller, C., Higazi, F., Hamdan, W., & Mroueh, M. (2010). Revised stratigraphy of the Upper Cretaceous and Cenozic series of Lebanon based on nannofossils. Geological Society, London, Special Publications, 341, 287–303.
    [Google Scholar]
  51. Nader, F. H. (2011). The petroleum prospectivity of Lebanon: An overview. Journal of Petroleum Geology, 34(2), 135–156. https://doi.org/10.1111/j.1747-5457.2011.00498.x
    [Google Scholar]
  52. Nader, F. H. (2014). The geology of Lebanon (p. 108). Beaconsfield, Bucks: Scientific Press Ltd.
    [Google Scholar]
  53. Nader, F. H., & Swennen, R. (2004). The hydrocarbon potential of Leanon: New insights from regional correlations and studies of Jurassic dolomitization. Journal of Petroleum Geology, 27(3), 253–275.
    [Google Scholar]
  54. Needham, D., Hosler, J., Nowak, S., Christensen, C., & Frech, J. (2013). The Tamar Field from Discovery to Production (Abstract). AAPG Search and Discovery Article #90161©2013 AAPG. European Regional Conference, Barcelona, Spain, 8–10 April 2013.
  55. Netzeband, G. L., Gohl, K., Hübscher, C. P., Ben‐Avraham, Z., Dehghani, G. A., Gajewski, D., & Liersch, P. (2006). The Levantine Basin crustal structure and origin. Tectonophysics, 418, 167–188. https://doi.org/10.1016/j.tecto.2006.01.001
    [Google Scholar]
  56. Reiche, S., Hübscher, C., & Beitz, M. (2014). Fault‐controlled evaporite deformation in the Levant Basin, Eastern Mediterranean. Marine Geology, 354, 53–68. https://doi.org/10.1016/j.margeo.2014.05.002
    [Google Scholar]
  57. Renouard, G. (1951). Sur la découvert du Jurassique inférieur (?) et du Jurassique Moyen au Liban. Comptes Rendues Académie Des Sciences, 232, 992–994.
    [Google Scholar]
  58. Renouard, G. (1955). Oil prospects of Lebanon. AAPG Bulletin, 39, 2125–2169.
    [Google Scholar]
  59. Roberts, G., & Peace, D. (2007). Hydrocarbon plays and prospectivity of the Levantine Basin, offshore Lebanon and Syria from modern seismic data. Geo Arabia, 12(3), 99–124.
    [Google Scholar]
  60. Robertson, A. H. F., Clift, P. D., Degnan, P. J., & Jones, G. (1991). Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 87, 289–344. https://doi.org/10.1016/0031-0182(91)90140-M
    [Google Scholar]
  61. Robertson, A. H. F., & Grasso, M. (1995). Overview of the Late Tertiary‐Recent tectonic and palaeo‐environmental development of the Mediterranean region. Terra Nova, 7(2), 114–127. https://doi.org/10.1111/j.1365-3121.1995.tb00680.x
    [Google Scholar]
  62. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., … Stoica, M. (2014). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58. https://doi.org/10.1016/j.margeo.2014.02.002
    [Google Scholar]
  63. Ryan, W. B. F. (2009). Decoding the Mediterranean salinity crisis. Sedimentology, 56, 95–136. https://doi.org/10.1111/j.1365-3091.2008.01031.x
    [Google Scholar]
  64. Ryan, W. B. F., Hsü, K. J., Cita, M. B., Dumitrica, P., Lort, J. M., Maync, W., …Wezel, F. C. (1973). Initial Reports of the Deep Sea Drilling Project, 13, Washington (U.S. Government Printing, Office),514–1447.
  65. Schlager, W. (2005). Carbonate sedimentology and sequence stratigraphy. SEPM Concepts in Sedimentology and Paleontology #8, Tulso, Oklahoma, 199.
  66. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of post‐mid‐Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research, 85, 3711–3739.
    [Google Scholar]
  67. Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, 196, 17–33.
    [Google Scholar]
  68. Steinberg, J., Gvirtzman, Z., Folkman, Y., & Garfunkel, Z. (2011). Origin and nature of the rapid late Tertiary filling of the Levant Basin. Geology, 39(4), 355–358. https://doi.org/10.1130/G31615.1
    [Google Scholar]
  69. Steinberg, J., Gvirtzman, Z., & Garfunkel, Z. (2014). Flexural response of a continental margin to sedimentary loading and lithospheric rupturing: The mountain ridge between the Levant Basin and the Dead Sea Transform. Tectonics, 33, 166–186. https://doi.org/10.1002/2013TC003330
    [Google Scholar]
  70. Steinberg, J., Roberts, A. M., Kuznir, N. J., Schafer, K., & Karcz, Z. (2018). Crustal structure and post‐rift evolution of the Levant Basin. Marine and Petroleum Geology, 96, 522–543. https://doi.org/10.1016/j.marpetgeo.2018.05.006
    [Google Scholar]
  71. Symeou, V., Homberg, C., Nader, F. H., Darnault, R., Lecomte, J.‐C., & Papadimitriou, N. (2018). Longitudinal and temporal evolution of the tectonic style along the Cyprus Arc system, assessed through 2‐D reflection seismic interpretation. Tectonics, 37, 30–47. https://doi.org/10.1002/2017TC004667
    [Google Scholar]
  72. Tucker, G. E., & Slingerland, R. (1994). Erosional dynamics, flexural isostasy, and long‐lived escarpments: A numerical modeling study. Journal of Geophysical Research, 10, 12229–12243. https://doi.org/10.1029/94JB00320
    [Google Scholar]
  73. Walley, C. D. (1983). A revision of the lower cretaceous stratigraphy of Lebanon. Geologische Rundschau, 72, 377–388. https://doi.org/10.1007/BF01765915
    [Google Scholar]
  74. Walley, C. D. (1997). The lithostratigraphy of Lebanon, a review. Lebanese Science Bulletin, 10, 81–108.
    [Google Scholar]
  75. Walley, C. D. (1998). Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region. Tectonophysics, 298(1–3), 37–62. https://doi.org/10.1016/S0040-1951(98)00177-2
    [Google Scholar]
  76. Walley, C. D. (2001). The Lebanon passive margin and the evolution of the Levantine Neo‐Tethys. In P. A.Ziegler , W.Cavazza , A. H.Robertson & S. D.Crasquin‐Soleau (Eds.), Peri‐Tethyan Rift–wrench basins and passive margins IGCP 369 results (pp. 407–439). Paris, France: Mémoires du Muséum National d’Histoire Naturelle. Peri‐Tethys Mémoire 6.
    [Google Scholar]
  77. Willgoose, G. R., Bras, R. L., & Roriguez‐Iturbe, I. (1991). A physically based coupled network growth and hillslope evolution model 1. Theory. Water Resources Research, 27(7), 1671–1684.
    [Google Scholar]
  78. Woillez, M.‐N., Souque, C., Rudkiewicz, J.‐L., Willien, F., & Cornu, T. (2017). Insights in fault flow behaviour from onshore Nigeria petroleum system modelling. Oil and Gas Science and Technology ‐ Rev. IFP Energies Nouvelles, 72, 5.
    [Google Scholar]
  79. Wood, B. G. M. (2015). Rethinking post‐Hercynian basin development: Eastern Mediterranean Region. GeoArabia, 20(3), 175–224.
    [Google Scholar]
  80. Wygrala, B., Rottke, W., Kornpihl, D., Neumaier, M., Al‐Balushi, A., & Marlow, L. (2014). Assessment of controlling factors in mixed biogenic and thermogenic petroleum systems – A Case Study from the Levantine Basin. AAPG Search and Discovery Article, #10636.
  81. Zeyen, H., Volker, F., Wehrle, V., Fuchs, K., Sobolev, S. V., & Altherr, R. (1997). Styles of continental rifting: Crust‐mantle detachment and mantle plumes. Tectonophysics, 278, 329–352. https://doi.org/10.1016/S0040-1951(97)00111-X
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12318
Loading
/content/journals/10.1111/bre.12318
Loading

Data & Media loading...

Supplements

 

PDF

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error