1887
Volume 31, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Miocene strata in the southern Taranaki Basin (STB), up to 3 km thick, provide a distal record of erosion associated with plate boundary deformation in New Zealand. 2D and 3D seismic reflection data tied to drillhole stratigraphy have been used to constrain four main phases of basin development. These are: (a) Early Miocene (22–19 Ma) subsidence, dominantly bathyal water depths and deposition of minor submarine fans along the eastern basin margin. (b) Middle Miocene (19–14 Ma) widespread submarine fan deposition on a bathyal basin floor in the central STB. (c) Rapid Middle–Late Miocene (14–7 Ma) progradation of the shelf break northwards across the STB. (d) Widespread uplift and erosion of the STB during the latest Miocene–Pliocene (7–4.5 Ma). Bathyal water depths and fan deposition in the Early Miocene were influenced by vertical motions on major reverse faults and regional subsidence produced by subduction of the Pacific plate beneath northern New Zealand. Subsequent submarine fan deposition and northward shelf‐break progradation reflect increasing input of terrigenous material, primarily eroded from an uplifting region to the south of the STB. Sedimentation patterns in the STB are consistent with the age and locations of conglomerates deposited in onshore West Coast basins, related to this uplift and erosion. Sediment transport in the West Coast region was mainly parallel to NNE trending active reverse faults, and in the STB was perpendicular to the NE‐SW orientated shelf break, especially from ca. 14–7 Ma, when sedimentation rates exceeded fault‐displacement rates. Increases in sedimentation rates in the STB coincide with regional increases in the rates of shortening that appear to reflect plate boundary‐wide events and have been attributed to, or correlated with, increases in the plate convergence rate. Miocene sedimentation patterns in the STB thus reflect both intra‐basinal deformation and tectonic signals from the wider developing New Zealand plate boundary.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12319
2019-01-29
2024-03-28
Loading full text...

Full text loading...

References

  1. Adams, C. J. (1979). Age and origin of the Southern Alps. In R. I.Walcott & M. M.Cresswell (Eds.), The origin of the Southern Alps, Royal Society of New Zealand Bulletin (Vol. 18, pp. 73–78). Wellington, New Zealand: Royal Society of New Zealand.
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (1990). Basin analysis principles and applications (451 p). Oxford, UK: Blackwell Scientific Publications.
    [Google Scholar]
  3. Anderton, P. W. (1981). Structure and evolution of the South Wanganui Basin, New Zealand. New Zealand Journal of Geology and Geophysics, 24, 39–63. https://doi.org/10.1080/00288306.1981.10422697
    [Google Scholar]
  4. Arnot, M. J., & Bland, K. J. (compilers) (2016). Atlas of petroleum prospectivity, Northwest Province: ArcGIS geodatabase and technical report. GNS Science data series, 23b, 1 report + 1 ArcGIS geodatabase + 5 ArcGIS projects.
  5. Athy, L. (1930). Density, porosity and compaction of sedimentary rocks. AAPG Bulletin, 14, 1–24.
    [Google Scholar]
  6. Austermann, J., Ben‐Avraham, Z., Bird, P., Heidbach, O., Schubert, G., & Stock, J. M. (2011). Quantifying the forces needed for the rapid change of Pacific plate motion at 6 Ma. Earth and Planetary Science Letters, 307, 289–297. https://doi.org/10.1016/j.epsl.2011.04.043.
    [Google Scholar]
  7. Bache, F., Mortimer, N., Sutherland, R., Collot, J., Rouillard, P., Stagpoole, V., & Nicol, A. (2014). Seismic stratigraphic record of transition from Mesozoic subduction to continental breakup in the Zealandia sector of eastern Gondwana. Gondwana Research, 26, 1060–1078. https://doi.org/10.1016/j.gr.2013.08.012.
    [Google Scholar]
  8. Bache, F., Sutherland, R., Stagpoole, V., Herzer, R., Collot, J., & Rouillard, P. (2012). Stratigraphy of the southern Norfolk Ridge and the Reinga Basin: A record of initiation of Tonga‐Kermadec‐Northland subduction in the southwest Pacific. Earth and Planetary Science Letters, 321–322, 41–53. https://doi.org/10.1016/j.epsl.2011.12.041.
    [Google Scholar]
  9. Bailleul, J., Chanier, F., Ferrière, J., Robin, C., Nicol, A., Mahieux, G., … Caron, V. (2013). Neogene evolution of lower trench‐slope basins and wedge development in the central Hikurangi subduction margin, New Zealand. Tectonophysics, 591, 152–174. https://doi.org/10.1016/j.tecto.2013.01.003.
    [Google Scholar]
  10. Bailleul, J., Robin, C., Chanier, F., Guillocheau, F., Field, B., & Ferrière, J. (2007). Turbidite systems in the inner forearc domain of the Hikurangi convergent margin (New Zealand): New constraints on the development of trench‐slope basins. Journal of Sedimentary Research, 77, 263–283. https://doi.org/10.2110/jsr.2007.028.
    [Google Scholar]
  11. Ballance, P. F. (1976). Evolution of the Upper Cenozoic magmatic arc and plate boundary in northern New Zealand. Earth and Planetary Science Letters, 28, 356–370. https://doi.org/10.1016/0012-821X(76)90197-7
    [Google Scholar]
  12. Barnes, P. M., & Nicol, A. (2004). Formation of an active thrust triangle zone associated with structural inversion in a subduction setting, eastern New Zealand. Tectonics, 23, TC1015. https://doi.org/10.1029/2002TC001449.
    [Google Scholar]
  13. Baur, J. R., King, P. R., Stern, T., & Leitner, B. (2011). Development and seismic geomorphology of a Miocene slope channel megasystem, Offshore Taranaki Basin, New Zealand. In: L.Wood , T.Simo , & N.Rosen (Eds.), Seismic imaging of depositional and geomorphic systems: SEPM Foundation, Gulf Coast Section, 30th annual research conference proceedings (pp. 618–649).
    [Google Scholar]
  14. Baur, J., Sutherland, R., & Stern, T. (2014). Anomalous passive subsidence of deep‐water sedimentary basins: A prearc basin example, southern New Caledonia Trough and Taranaki Basin, New Zealand. Basin Research, 26, 242–268. https://doi.org/10.1111/bre.12030.
    [Google Scholar]
  15. Baur, J. R. (2012). Regional seismic attribute analysis and tectono‐stratigraphy of offshore south‐western Taranaki Basin, New Zealand. Unpublished Ph.D. thesis, Victoria University of Wellington, 391 p.
  16. Boyden, J., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A., Turner, M. H., … Cannon, J. S. (2011). Next‐generation plate‐tectonic reconstructions using GPlates. In G.Keller , & C.Baru (Eds.), Geoinformatics: Cyberinfrastructure for the solid earth sciences (pp. 95–114). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  17. Bull, S., Hill, M., Arnot, M. J., Seebeck, H., Kroeger, K. F., & Zhu, H. (2015). Depth Structure maps, isopach maps and regional velocity model from southern Taranaki Basin (4D. Taranaki Project). GNS Science Data Series, 12C, 12p, 1, DVD.
  18. Bull, S., Hill, M., Strogen, D. P., Arnot, M. J., Seebeck, H., Kroeger, K. F., & Zhu, H. (2016). Seismic reflection interpretation, static modelling and velocity modelling of the southern Taranaki Basin (4D Taranaki Project) (91 p). GNS Science Report, 2015/02.
  19. Bunce, M., Worthy, T. H., Phillips, M. J., Holdaway, R. N., Willerslev, E., Haile, J., … Cooper, A. (2009). The evolutionary history of the extinct ratite moa and New Zealand Neogene paleogeography. Proceedings of the National Academy of Sciences of the United States of America, 106, 20646–20651. https://doi.org/10.1073/pnas.0906660106.
    [Google Scholar]
  20. Cande, S., & Stock, J. (2004). Pacific‐Antarctic‐Australian motion and the formation of the Macquarie Plate. Geophysical Journal International, 157, 399–414.
    [Google Scholar]
  21. Chanier, F., & Ferriere, J. (1991). From a passive to an active margin; tectonic and sedimentary processes linked to the birth of an accretionary prism (Hikurangi Margin, New Zealand). Bulletin De La Societe Geologique De France, 162, 649–660. https://doi.org/10.2113/gssgfbull.162.4.649.
    [Google Scholar]
  22. Childs, C., Nicol, A., Walsh, J. J., & Watterson, J. (2003). The growth and propagation of synsedimentary faults. Journal of Structural Geology, 25, 633–648. https://doi.org/10.1016/S0191-8141(02)00054-8.
    [Google Scholar]
  23. Choi, H., Kim, S.‐S., Dyment, J., Granot, R., Park, S.‐H., & Hong, J. K. (2017). The kinematic evolution of the Macquarie Plate: A case study for the fragmentation of oceanic lithosphere. Earth and Planetary Science Letters, 478, 132–142. https://doi.org/10.1016/j.epsl.2017.08.035.
    [Google Scholar]
  24. Cooper, A., Barreiro, B., Kimbrough, D. L., & Mattinson, J. M. (1987). Lamprophyre dike intrusion and the age of the Alpine fault, New Zealand. Geology, 15, 941–944. https://doi.org/10.1130/0091-7613(1987)15<941:LDIATA>2.0.CO;2
    [Google Scholar]
  25. Croon, M. B., Cande, S. C., & Stock, J. M. (2008). Revised Pacific‐Antarctic plate motions and geophysics of the Menard Fracture Zone. Geochemistry, Geophysics, Geosystems, 9, 1–20. https://doi.org/10.1029/2008GC002019.
    [Google Scholar]
  26. Cutten, H. N. (1979). Rappahannock Group: Late Cenozoic sedimentation and tectonics contemporaneous with Alpine Fault movement. New Zealand Journal of Geology and Geophysics, 20, 719–777. https://doi.org/10.1080/00288306.1979.10424165
    [Google Scholar]
  27. Delteil, J., Morgans, H. E. G., Raine, J. I., Field, B. D., & Cutten, H. N. (1996). Early Miocene thin‐skinned tectonics and wrench faulting in the Pongaroa district, Hikurangi margin, North Island, New Zealand. New Zealand Journal of Geology and Geophysics, 39, 271–282. https://doi.org/10.1080/00288306.1996.9514711
    [Google Scholar]
  28. Etienne, S., Collot, J., Sutherland, R., Patriat, M., Bache, F., Rouillard, P., … Juan, C. (2018). Deepwater sedimentation and Cenozoic deformation in the Southern New Caledonia Trough (Northern Zealandia, SW Pacific). Marine and Petroleum Geology, 92, 764–779. https://doi.org/10.1016/j.marpetgeo.2017.12.007.
    [Google Scholar]
  29. Field, B. D., Browne, G. H., Davy, B. W., Herzer, R. H., Hoskins, R. H., Raine, J. I., … Watters, W. A. (1989). Cretaceous and Cenozoic sedimentary basins and geological evolution of the Canterbury region, South Island, New Zealand. New Zealand Geological Survey Basin Studies, 2 (94 p.) Lower Hutt: New Zealand Geological Survey.
    [Google Scholar]
  30. Field, B. D., Uruski, C. I., Beu, A. G., Browne, G. H., Crampton, J. S., Funnell, R. H., … Strong, C. P. (1997). Cretaceous‐Cenozoic geology and petroleum systems of the East Coast region, New Zealand. Monograph, 19 (301 p & 7 enclosures). Lower Hutt, New Zealand: Institute of Geological & Nuclear Sciences.
    [Google Scholar]
  31. Fleming, C. A. (1953). The geology of Wanganui subdivision; Waverley and Wanganui sheet districts (N137 and N138) (Vol. 52, 361 pp). Wellington, New Zealand: New Zealand Geological Survey Bulletin.
    [Google Scholar]
  32. Fohrmann, M., Reid, E., Hill, M. G., King, P. R., Zhu, H., Bland, K. J., …Scott, G. (2012). Seismic reflection character, mapping and tectono‐stratigraphic history of the Kupe area (4‐D Taranaki project), south‐eastern Taranaki Basin (62 p). GNS Science Report, 2012/36.
  33. Fyfe, H. E. (1968). Geology of Murchison Subdivision. New Zealand Geological Survey Bulletin, 36 (51 p). Wellington, New Zealand: Department of Scientific and Industrial Research.
    [Google Scholar]
  34. Gaina, C., Müller, D. R., Royer, J.‐Y., Stock, J., Hardebeck, J., & Symonds, P. (1998). The tectonic history of the Tasman Sea: A puzzle with 13 pieces. Journal of Geophysical Research, 103, 12413–12433. https://doi.org/10.1029/98jb00386.
    [Google Scholar]
  35. Ghisetti, F., Sibson, R. H., & Hamling, I. (2016). Deformed Neogene basins, active faulting and topography in Westland: Distributed crustal mobility west of the Alpine Fault transpressive plate boundary (South Island, New Zealand). Tectonophysics, 693(Part B), 340–362. https://doi.org/10.1016/j.tecto.2016.03.024.
    [Google Scholar]
  36. Giba, M., Nicol, A., & Walsh, J. J. (2010). Evolution of faulting and volcanism in a back‐arc basin and its implications for subduction processes. Tectonics, 29, TC2040, 18. https://doi.org/10.1029/2009TC002634.
    [Google Scholar]
  37. Giba, M., Walsh, J. J., & Nicol, A. (2012). Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural Geology, 39, 253–267. https://doi.org/10.1016/j.jsg.2012.01.004.
    [Google Scholar]
  38. Grain, S. L. (2008). Palaeogeography of a Mid Miocene turbidite complex, Moki Formation, Taranaki Basin, New Zealand. Unpublished M.Sc. thesis, Victoria University of Wellington, 182.
  39. Granot, R., Cande, S. C., Stock, J. M., & Damaske, D. (2013). Revised Eocene‐Oligocene kinematics for the West Antarctic rift system. Geophysical Research Letters, 40, 279–284. https://doi.org/10.1029/2012GL054181.
    [Google Scholar]
  40. Griffin, A. G. (2001). Late Cenozoic subsurface geology of the Taranaki Peninsula region based on analysis of geophysical well logs (205 p, 3 enclosures). Unpublished M.Sc. thesis, The University of Waikato, Hamilton.
  41. Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L., & Müller, R. D. (2003). Catastrophic initiation of subduction following forced convergence across fracture zones. Earth and Planetary Science Letters, 212, 15–30. https://doi.org/10.1016/S0012-821X(03)00242-5.
    [Google Scholar]
  42. Hansen, R. J., & Kamp, P. J. J. (2004). Late Miocene to Early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin. New Zealand Journal of Geology and Geophysics, 47, 645–662. https://doi.org/10.1080/00288306.2004.9515081
    [Google Scholar]
  43. Hayward, B. W., & Wood, R. A. (1989). Computer‐generated geohistory plots for Taranaki drillhole sequences. New Zealand Geological Survey report PAL, 147 (73 p). Lower Hutt, New Zealand: New Zealand Geological Survey.
    [Google Scholar]
  44. Higgs, K. E., Morgans, H. E. G., King, P. R., & Browne, G. H. (2001). A reservoir study of the Tariki sandstone, Onshore Taranaki. New Zealand Unpublished Openfile Petroleum Report, PR2616, 350 p, 19 enclosures.
  45. Higgs, K. E., Pollock, R. M., Field, B. D., & Strong, C. P. (2004). Kauri Sandstone Reservoir Study, Taranaki Basin, New Zealand, Client Report, 2004/72 (344 p). Lower Hutt, New Zealand: Institute of Geological & Nuclear Sciences.
    [Google Scholar]
  46. Higgs, K. E. (2004). A petrographic and reservoir quality study of the Moki Formation, Taranaki Basin. New Zealand Unpublished Openfile Petroleum Report, PR3005, 188 p.
  47. Holt, W. E., & Stern, T. A. (1994). Subduction, platform subsidence, and foreland thrust loading: The late Tertiary development of Taranaki Basin, New Zealand. Tectonics, 13, 1068–1092. https://doi.org/10.1029/94tc00454.
    [Google Scholar]
  48. Hood, S. D., Nelson, C. S., & Kamp, P. J. J. (2003). Lithostratigraphy and depositional episodes of the Oligocene carbonate‐rich Tikorangi Formation, Taranaki Basin, New Zealand. New Zealand Journal of Geology and Geophysics, 46, 363–386. https://doi.org/10.1080/00288306.2003.9515015
    [Google Scholar]
  49. Kamp, P. J. J. (1986). Late Cretaceous‐Cenozoic tectonic development of the southwest Pacific region. Tectonophysics, 121, 225–251. https://doi.org/10.1016/0040-1951(86)90045-4
    [Google Scholar]
  50. Kamp, P. J. J., Vonk, A. J., Bland, K. J., Hansen, R. J., Hendy, A. J. W., McIntyre, A. P., … Nelson, C. S. (2004). Neogene stratigraphic architecture and tectonic evolution of Wanganui, King Country, and eastern Taranaki basins, New Zealand. New Zealand Journal of Geology and Geophysics, 47, 625–644. https://doi.org/10.1080/00288306.2004.9515080.
    [Google Scholar]
  51. Kamp, P. J. J., Webster, K. S., & Nathan, S. (1996). Thermal history analysis by integrated modelling of apatite fission track and vitrinite reflectance data: Application to an inverted basin (Buller Coalfield, New Zealand). Basin Research, 8, 383–402. https://doi.org/10.1046/j.1365-2117.1996.00152.x
    [Google Scholar]
  52. King, P. R. (1990). Polyphase evolution of the Taranaki Basin, New Zealand: Changes in sedimentary and structural style, New Zealand Petroleum Conference Proceedings 1989 (pp. 134–150). Wellington, New Zealand: Ministry of Economic Development.
    [Google Scholar]
  53. King, P. R. (2000). Tectonic reconstructions of New Zealand 40 Ma to the present. New Zealand Journal of Geology and Geophysics, 43, 611–638. https://doi.org/10.1080/00288306.2000.9514913.
    [Google Scholar]
  54. King, P. R., & Browne, G. H. (2001). Miocene turbidite reservoir systems in the Taranaki Basin, New Zealand: Established plays and analogues for deep-water exploration. In Eastern Australasian Basins Symposium (2001, Melbourne). pp. 129–139.
    [Google Scholar]
  55. King, P. R., Naish, T. R., Browne, G. H., Field, B. D., & Edbrooke, S. W. (compilers) (1999). Cretaceous to recent sedimentary patterns in New Zealand (Folio Series, 1, 35 p, 39 transects, 1 enclosure). Lower Hutt, New Zealand: Institute of Geological & Nuclear Sciences.
    [Google Scholar]
  56. King, P. R., & Thrasher, G. P. (1992). Post‐Eocene development of the Taranaki Basin, New Zealand; convergent overprint of a passive margin. In: J. S.Watkins , F.Zhiqiang , & K. J.McMillen (Eds.), Geology and geophysics of continental margins. AAPG Memoir, 53, 93–118.
    [Google Scholar]
  57. King, P. R., & Thrasher, G. P. (1996). Cretaceous‐Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand. Monograph, 13 (243 p, 6, enclosures). Lower Hutt, New Zealand: Institute of Geological & Nuclear Sciences.
    [Google Scholar]
  58. Kroeger, K. F., Funnell, R. H., Arnot, M. J., Bull, S., Hill, M. G., & Sahoo, T. R. (2015). Re‐assessment of maturity and charge in southern Taranaki Basin (New Zealand) using integrated 3D basin modelling. AAPG/SEG International Conference & Exhibition 2015, Melbourne, Australia, 13–16 September 2015. Eastern Australian Basins Symposium, 2015, 217–230.
    [Google Scholar]
  59. Landis, C. A., Campbell, H. J., Begg, J. G., Mildenhall, D. C., Paterson, A. M., & Trewick, S. A. (2008). The Waipounamu erosion surface: Questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine, 145, 173–197. https://doi.org/10.1017/S0016756807004268.
    [Google Scholar]
  60. Lihou, J. C. (1993). The structure and deformation of the Murchison Basin, South Island, New Zealand. New Zealand Journal of Geology and Geophysics, 36, 95–105. https://doi.org/10.1080/00288306.1993.9514557
    [Google Scholar]
  61. Mingard Geoscience
    Mingard Geoscience (2012). The Middle Miocene "Motueka" Sands south Taranaki Graben (45 p). New Zealand Unpublished Openfile Petroleum Report, PR4785.
  62. Mortimer, N., Sutherland, R., & Nathan, S. (2001). Torlesse greywacke and Haast Schist source for Pliocene conglomerates near Reefton, New Zealand. New Zealand Journal of Geology and Geophysics, 44, 105–111. https://doi.org/10.1080/00288306.2001.9514927.
    [Google Scholar]
  63. Nathan, S., Anderson, H. J., Cook, R. A., Herzer, R. H., Hoskins, R. H., Raine, J. I., & Smale, D. (1986). Cretaceous and Cenozoic sedimentary basins of the West Coast region, South Island, New Zealand (89 p). New Zealand Geological Survey Basin Studies, 1, Wellington.
  64. Nicol, A. (2011). Landscape history of the Marlborough Sounds. New Zealand Journal of Geology and Geophysics, 54, 195–208. https://doi.org/10.1080/00288306.2010.523079.
    [Google Scholar]
  65. Nicol, A., & Campbell, J. K. (1990). Late Cenozoic thrust tectonics, Picton, New Zealand. New Zealand Journal of Geology and Geophysics, 33, 485–494. https://doi.org/10.1080/00288306.1990.10425703
    [Google Scholar]
  66. Nicol, A., Mazengarb, C., Chanier, F., Rait, G., Uruski, C. I., & Wallace, L. M. (2007). Tectonic evolution of the active Hikurangi subduction margin, New Zealand, since the Oligocene. Tectonics, 26, TC4002. https://doi.org/10.1029/2006TC002090.
    [Google Scholar]
  67. Nicol, A., Van Dissen, R., Vella, P., Alloway, B., & Melhuish, A. (2002). Growth of contractional structures during the last 10 m.y. at the southern end of the emergent Hikurangi forearc basin, New Zealand. New Zealand Journal of Geology and Geophysics, 45, 365–385. https://doi.org/10.1080/00288306.2002.9514979.
    [Google Scholar]
  68. Nicol, A., Walsh, J., Berryman, K., & Nodder, S. (2005). Growth of a normal fault by the accumulation of slip over millions of years. Journal of Structural Geology, 27, 327–342.
    [Google Scholar]
  69. Palmer, J. A., & Andrews, P. B. (1993).Cretaceous‐Tertiary sedimentation and implied tectonic controls on the structural evolution of Taranaki Basin, New Zealand. In P. F.Ballance (Ed.), South Pacific sedimentary basins. Sedimentary basins of the world, 2 (pp. 309–328). Amsterdam, the Netherlands: Elsevier Science Publishers.
    [Google Scholar]
  70. Pilaar, W. F. H., & Wakefield, L. L. (1978). Structural and stratigraphic evolution of the Taranaki Basin, offshore North Island, New Zealand. The APEA Journal, 18, 93–101.
    [Google Scholar]
  71. Raine, J. I., Beu, A. G., Boyes, A. F., Campbell, H. J., Cooper, R. A., Crampton, J. S., … Mortimer, N. (2015). New Zealand Geological Timescale NZGT 2015/1. New Zealand Journal of Geology and Geophysics, 58, 398–403. https://doi.org/10.1080/00288306.2015.1086391.
    [Google Scholar]
  72. Rait, G., Chanier, F., & Waters, D. W. (1991). Landward‐ and seaward‐directed thrusting accompanying the onset of subduction beneath New Zealand. Geology, 19, 230–233. https://doi.org/10.1130/0091-7613(1991)019<0230:LASDTA>2.3.CO;2
    [Google Scholar]
  73. Reilly, C., Nicol, A., Walsh, J. J., & Seebeck, H. (2015). Evolution of faulting and plate boundary deformation in the Southern Taranaki Basin, New Zealand. Tectonophysics, 651–652, 1–18. https://doi.org/10.1016/j.tecto.2015.02.009.
    [Google Scholar]
  74. Reilly, C. (2015). Tectonic evolution, fault growth and hydrocarbon migration in the southern Taranaki Basin, New Zealand. Unpublished Ph.D. thesis, University College Dublin, Dublin, 267 p.
  75. Reyners, M. (2013). The central role of the Hikurangi Plateau in the Cenozoic tectonics of New Zealand and the Southwest Pacific. Earth and Planetary Science Letters, 361, 460–468. https://doi.org/10.1016/j.epsl.2012.11.010.
    [Google Scholar]
  76. Reyners, M., Eberhart‐Phillips, D., & Bannister, S. (2017). Subducting an old subduction zone sideways provides insights into what controls plate coupling. Earth and Planetary Science Letters, 466, 53–61. https://doi.org/10.1016/j.epsl.2017.03.004.
    [Google Scholar]
  77. Roncaglia, L., Fohrmann, M., Milner, M., Morgans, H. E. G., & Crundwell, M. P. (2013). Well log stratigraphy in the central and southern offshore area of the Taranaki Basin, New Zealand (26 p). GNS Science Report, 2013/27.
  78. Rose, R. V. (1996). Summary of Miocene to Recent conglomerate provenance and gold content and plate boundary tectonics of the West Coast region. Wellington: The Australasian Institute of Mining and Metallurgy, New Zealand Branch, 29th annual conference 1996, 82–109.
  79. Rose, R. V. (2011). Quaternary geology and stratigraphy of North Westland, South Island, New Zealand. Unpublished Ph.D. thesis, University of Canterbury, Christchurch, 528 p.
  80. Sahoo, T. R., & Bland, K. J. (compilers) (2017). Atlas of petroleum prospectivity, Southeast Province: ArcGIS geodatabase and technical report. GNS Science data series, 23c, 1 report + 1 ArcGIS geodatabase + 5 ArcGIS projects.
  81. Sahoo, T. R., Funnell, R. H., & Bull, S. (2016). Neogene exhumation histories in the southern Taranaki Basin (30 p). GNS Science Report,2016/32.
  82. Seebeck, H., Nicol, A., Giba, M., Pettinga, J., & Walsh, J. (2013). Geometry of the subducting Pacific plate since 20 Ma, Hikurangi margin, New Zealand. Journal of the Geological Society, 171, 131–143. https://doi.org/10.1144/jgs2012-145.
    [Google Scholar]
  83. Stagpoole, V. M., & Nicol, A. (2008). Regional structure and kinematic history of a large subduction back thrust: Taranaki Fault, New Zealand. Journal of Geophysical Research, 113(B01403), 2008. https://doi.org/10.1029/2007JB005170.
    [Google Scholar]
  84. Stern, T., Houseman, G., Salmon, M., & Evans, L. (2013). Instability of a lithospheric step beneath western North Island, New Zealand. Geology, 41, 423–426. https://doi.org/10.1130/G34028.1.
    [Google Scholar]
  85. Stern, T. A., Quinlan, G. M., & Holt, W. E. (1992). Basin formation behind an active subduction zone: Three‐dimensional flexural modelling of Wanganui Basin, New Zealand. Basin Research, 4, 197–214. https://doi.org/10.1111/j.1365-2117.1992.tb00045.x
    [Google Scholar]
  86. Strogen, D. P., & King, P. R. (2014). A new Zealandia‐wide seismic horizon naming scheme (20 p). GNS Science Report, 2014/34.
  87. Strogen, D. P., Bland, K. J., Nicol, A., & King, P. R. (2014). Paleogeography of the Taranaki Basin region during the latest Eocene‐Early Miocene and implications for the ‘total drowning’ of Zealandia. New Zealand Journal of Geology and Geophysics, 57, 110–127. https://doi.org/10.1080/00288306.2014.901231.
    [Google Scholar]
  88. Strogen, D. P., Higgs, K. E., Griffin, A. G., & Morgans, H. E. G. (2018). Late Eocene‐Early Miocene facies and stratigraphic development, Taranaki Basin, New Zealand; the transition to plate boundary tectonics during regional transgression. Geological Magazine, 1–20.
    [Google Scholar]
  89. Strogen, D. P., Seebeck, H., Nicol, A., & King, P. R. (2017). Two‐phase Cretaceous‐Paleocene rifting in the Taranaki Basin region, New Zealand; implications for Gondwana break‐up. Journal of the Geological Society, 174, 929–946. https://doi.org/10.1144/jgs2016-160.
    [Google Scholar]
  90. Strogen, D. P. C.(2011). Updated paleogeographic maps for the Taranaki Basin and surrounds (83 p). GNS Science Report, 2010/53.
  91. Suggate, R. P., Stevens, G. R., & Te Punga, M. T. (1978). The geology of New Zealand (p. 820p). Wellington: Government Printer.
    [Google Scholar]
  92. Suggate, R. P. (1984). Geological map of New Zealand 1:50,000 Sheet M29 AC Mangles Valley. Geological map of New Zealand 1:50,000 (1 map + 1 booklet). Lower Hutt, New Zealand: New Zealand Geological Survey.
  93. Suppe, J., Chou, G. T., & Hook, S. C. (1992). Rates of folding and faulting determined from growth strata. In K. R.McClay (Ed.), Thrust Tectonics (pp. 105–121). Berlin, Germany: Springer Netherlands.
    [Google Scholar]
  94. Sutherland, R. (1996). Transpressional development of the Australia‐Pacific boundary through southern South Island, New Zealand: Constraints from Miocene‐Pliocene sediments, Waiho‐1 borehole, South Westland. New Zealand Journal of Geology and Geophysics, 39, 251–264. https://doi.org/10.1080/00288306.1996.9514709.
    [Google Scholar]
  95. Sutherland, R., Collot, J., Lafoy, Y., Logan, G. A., Hackney, R., Stagpoole, V., … Rollet, N. (2010). Lithosphere delamination with foundering of lower crust and mantle caused permanent subsidence of New Caledonia Trough and transient uplift of Lord Howe Rise during Eocene and Oligocene initiation of Tonga‐Kermadec subduction, western Pacific. Tectonics, 29, TC2004. https://doi.org/10.1029/2009tc002476.
    [Google Scholar]
  96. Sykes, R., Scadden, P. G., Martin, C., Collier, T. J., Bland, K. J., Griffin, A. G., & Strogen, D. P. (2014). An ArcGIS project on petroleum source rock potential and maturity in New Zealand basins. GNS Science consultancy report, 2014/244, 16p + portable hard drive.
  97. Thrasher, G. P., & Cahill, J. P. (1990). Subsurface Maps of the Taranaki Basin Region, New Zealand. New Zealand Geological Survey report, G142. Lower Hutt, New Zealand: DSIR Geology & Geophysics.
  98. Tippett, J. M., & Kamp, P. J. J. (1993). The role of faulting in rock uplift in the Southern Alps, New Zealand. New Zealand Journal of Geology and Geophysics, 36, 497–504. https://doi.org/10.1080/00288306.1993.9514595.
    [Google Scholar]
  99. Turnbull, I. M., Uruski, C. I., Anderson, H. J., Lindqvist, J. K., Scott, G. H., Morgans, H. E. G., … Field, B. D. (1993). Cretaceous and Cenozoic sedimentary basins of western Southland, South Island, New Zealand. Monograph, 1 (86 p). Lower Hutt, New Zealand: Institute of Geological & Nuclear Sciences.
    [Google Scholar]
  100. Voggenreiter, W. R. (1993). Structure and evolution of the Kapuni Anticline, Taranaki Basin, New Zealand: Evidence from Kapuni 3D seismic survey. New Zealand Journal of Geology and Geophysics, 36, 77–94.
    [Google Scholar]
  101. Vonk, A. J., & Kamp, P. J. J. (2008). The Late Miocene Southern and Central Taranaki Inversion Phase (SCTIP) and related sequence stratigraphy and paleogeography, New Zealand Petroleum Conference Proceedings 2008 (17 p). Wellington, New Zealand: Ministry of Economic Development.
    [Google Scholar]
  102. Walcott, R. I. (1984). Reconstructions of the New Zealand region for the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 46, 217–231. https://doi.org/10.1016/0031-0182(84)90035-X.
    [Google Scholar]
  103. Walcott, R. I. (1998). Modes of oblique compression: Late Cenozoic tectonics of the south island of New Zealand. Reviews of Geophysics, 36, 1–26. https://doi.org/10.1029/97RG03084.
    [Google Scholar]
  104. Wood, R. A., & Stagpoole, V. M. (2007). Validation of tectonic reconstructions by crustal volume balance: New Zealand through the Cenozoic. Geological Society of America Bulletin, 119, 933–943. https://doi.org/10.1130/B26018.1.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12319
Loading
/content/journals/10.1111/bre.12319
Loading

Data & Media loading...

Supplements

 

PDF
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error