1887
Volume 31, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

Classic sequence stratigraphy suggests depositional sequences can form due to changes in accommodation and due to changes in sediment supply. Accommodation‐dominated sequences are problematic to define rigorously, but are commonly interpreted from outcrop and subsurface data. In contrast, supply‐dominated sequences are much less commonly identified. We employ numerical stratigraphic forward modelling to compare stratal geometries forced by cyclic changes in relative sea level with stratal geometries forced by sediment discharge and water discharge changes. Our quantitative results suggest that both relative sea‐level oscillations and variations in sediment/water discharge ratio are able to form sequence‐bounding unconformities independently, confirming previous qualitative sequences definitions. In some of the experiments, the two types of sequence share several characteristics, such as an absence of coastal‐plain topset deposits and stratal offlap, something typically interpreted as the result of falling relative sea level. However, the stratal geometries differ when variations in amplitude and frequency of relative sea‐level change, sediment/water discharge ratio, transport diffusion coefficient and initial bathymetry are applied. We propose that the supply‐dominated sequences could be recognised in outcrop or in the subsurface if the observations of stratal offlap and the absence of coastal‐plain topset can be made without any strong evidence of relative sea‐level fall (e.g. descending shoreline trajectory). These quantitative results suggest that both supply‐dominated and accommodation‐dominated sequences are likely to occur in the ancient record, as a consequence of multiple, possibly complex, controls.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12320
2018-11-11
2024-03-19
Loading full text...

Full text loading...

References

  1. Blum, M. D., & Hattier‐Womack, J. (2009). Climate change, sea‐level change, and fluvial sediment supply to deepwater depositional systems. External Controls on Deep Water Depositional Systems: SEPM, Special Publication, 92, 15–39.
    [Google Scholar]
  2. Blum, M. D., & Price, D. M. (1998). Quaternary alluvial plain construction in response to glacio eustatic and climatic controls Texas Gulf coastal plain. In: K. W.Shanley , & P. J.McCabe (Eds.), Relative role of eustasy, climate and tectonism in continental rocks (59, pp. 31–48). SEPM Special Publication.
    [Google Scholar]
  3. Burgess, P. M. (2016). The future of the sequence stratigraphy paradigm: Dealing with a variable third dimension. Geology, 44, 335–336.
    [Google Scholar]
  4. Burgess, P. M., & Prince, G. D. (2015). Non‐unique stratal geometries: Implications for sequence stratigraphic interpretations. Basin Research, 27(3), 351–365. https://doi.org/10.1111/bre.12082
    [Google Scholar]
  5. Burgess, P. M., & Steel, R. J. (2017). How to interpret, understand, and predict Stratal geometries using stratal‐control spaces and Stratal‐Control‐Space trajectories. Journal of Sedimentary Research, 87(4), 325–337. https://doi.org/10.2110/jsr.2017.19
    [Google Scholar]
  6. Catuneanu, O. (2006). Principles of sequence stratigraphy (p. 375). Amsterdam: Elsevier.
    [Google Scholar]
  7. Catuneanu, O. (2017). Sequence stratigraphy: Guidelines for a standard methodology. In Stratigraphy & Timescales (Vol. 2, pp. 1–57). Cambridge, MA: Academic Press.
    [Google Scholar]
  8. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., … Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92(1–2), 1–33. https://doi.org/10.1016/j.earscirev.2008.10.003
    [Google Scholar]
  9. Catuneanu, O., Willis, A. J., & Miall, A. D. (1998). Temporal significance of sequence boundaries. Sedimentary Geology, 121(3–4), 157–178. https://doi.org/10.1016/S0037-0738(98)00084-0
    [Google Scholar]
  10. Chen, S., Steel, R., Olariu, C., & Zhang, J. (2018). Clinoform drivers of the late miocene to pliocene Paleo‐Orinoco delta. EGU General Assembly Conference Abstracts, 20, 7910.
    [Google Scholar]
  11. Christie‐Blick, N. (1991). Onlap, offlap, and the origin of unconformity‐bounded depositional sequences. Marine Geology, 97(1–2), 35–56. https://doi.org/10.1016/0025-3227(91)90018-Y
    [Google Scholar]
  12. Csato, I., Catuneanu, O., & Granjeon, D. (2014). Millennial‐scale sequence stratigraphy: Numerical simulation with Dionisos. Journal of Sedimentary Research, 84, 394–406. https://doi.org/10.2110/jsr.2014.36
    [Google Scholar]
  13. Dietrich, P., Ghienne, J. F., Schuster, M., Lajeunesse, P., Nutz, A., Deschamps, R., … Duringer, P. (2017). From outwash to coastal systems in the Portneuf‐Forestville deltaic complex (Québec North Shore): Anatomy of a forced regressive deglacial sequence. Sedimentology, 64(4), 1044–1078. https://doi.org/10.1111/sed.12340
    [Google Scholar]
  14. Eide, C. H., Müller, R., & Helland‐Hansen, W. (2018). Using climate to relate water discharge and area in modern and ancient catchments. Sedimentology, 65(4), 1378–1389. https://doi.org/10.1111/sed.12426
    [Google Scholar]
  15. Fielding, C. R. (2015). Anatomy of falling‐stage deltas in the Turonian Ferron Sandstone of the western Henry Mountains Syncline, Utah: Growth faults, slope failures and mass transport complexes. Sedimentology, 62(1), 1–26. https://doi.org/10.1111/sed.12136
    [Google Scholar]
  16. Galloway, W. E. (1989). Genetic stratigraphic sequences in basin analysis I: Architecture and genesis of flooding‐surface bounded depositional units. AAPG Bulletin, 73(2), 125–142.
    [Google Scholar]
  17. Granjeon, D. (1996). Modélisation stratigraphique déterministe: Conception et applications d'un modèle diffusif 3D multilithologique (Doctoral dissertation, Université Rennes 1).
    [Google Scholar]
  18. Granjeon, D. (2014). 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin (pp. 453–472). Chichester, UK: John Wiley & Sons Ltd.
    [Google Scholar]
  19. Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3‐D multiple lithology, diffusive model in stratigraphic modelling. SEPM Special Publication No., 62, 197–210.
    [Google Scholar]
  20. Gvirtzman, Z., Csato, I., & Granjeon, D. (2014). Constraining sediment transport to deep marine basins through submarine channels: The Levant margin in the Late Cenozoic. Marine Geology, 347, 12–26. https://doi.org/10.1016/j.margeo.2013.10.010
    [Google Scholar]
  21. Hajek, E. A., & Straub, K. M. (2017). Autogenic sedimentation in clastic stratigraphy. Annual Review of Earth and Planetary Sciences, 45, 681–709. https://doi.org/10.1146/annurev-earth-063016-015935
    [Google Scholar]
  22. Hampson, G. J. (2016). Towards a sequence stratigraphic solution set for autogenic processes and allogenic controls: Upper Cretaceous strata, Book Cliffs, Utah. USA. Journal of the Geological Society, 173(5), 817–836. https://doi.org/10.1144/jgs2015-136
    [Google Scholar]
  23. Harris, A., Covault, J., Madof, A., Sun, T., Sylvester, Z., & Granjeon, D. (2016). Three‐dimensional numerical modelling of eustatic control on continental‐margin sand distribution. Journal of Sedimentary Research, 86, 1434–1443.
    [Google Scholar]
  24. Helland‐Hansen, W., & Hampson, G. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21(5), 454–483. https://doi.org/10.1111/j.1365-2117.2009.00425.x
    [Google Scholar]
  25. Heller, P. L., Burns, B. A., & Marzo, M. (1993). Stratigraphic solution sets for determining the roles of sediment supply, subsidence, and sea level on transgressions and regressions. Geology, 21(8), 747–750. https://doi.org/10.1130/0091-7613(1993)021<0747:SSSFDT>2.3.CO;2
    [Google Scholar]
  26. Holbrook, J., & Bhattacharya, J. (2012). Reappraisal of the sequence boundary in time and space: Case and considerations for an SU (subaerial unconformity) that is not a sediment bypass surface, a time barrier, or an unconformity. Earth‐Science Reviews, 113(3–4), 271–302. https://doi.org/10.1016/j.earscirev.2012.03.006
    [Google Scholar]
  27. Holbrook, J., Scott, R. W., & Oboh‐Ikuenobe, F. E. (2006). Base‐level buffers and buttresses: A model for upstream versus downstream control on fluvial geometry and architecture within sequences. Journal of Sedimentary Research, 76(1), 162–174. https://doi.org/10.2110/jsr.2005.10
    [Google Scholar]
  28. Holbrook, J., & Wanas, H. (2014). A fulcrum approach to assessing source‐to‐sink mass balance using channel paleohydrologic paramaters derivable from common fluvial data sets with an example from the Cretaceous of Egypt. Journal of Sedimentary Research, 84(5), 349–372. https://doi.org/10.2110/jsr.2014.29
    [Google Scholar]
  29. Kenyon, P., & Turcotte, D. (1985). Morphology of a delta prograding by bulk sediment transport. Geological Society of America Bulletin, 96(11), 1457. https://doi.org/10.1130/0016-7606(1985)96<1457:MOADPB>2.0.CO;2
    [Google Scholar]
  30. Kominz, M., & Pekar, S. (2001). Oligocene eustasy from two‐dimensional sequence stratigraphic backstripping. Geological Society of America Bulletin, 113(3), 291–304. https://doi.org/10.1130/0016-7606(2001)113<0291:OEFTDS>2.0.CO;2
    [Google Scholar]
  31. Li, Y., & Bhattacharya, J. P. (2013). Facies‐architecture study of a stepped, forced regressvie compound incised valley in the Ferron Notom Delta, Southern Central Utah, U.S.A. Journal of Sedimentary Research, 83, 206–225. https://doi.org/10.2110/jsr.2013.19
    [Google Scholar]
  32. Miller, K. G., et al. (2005). The phanerozoic record of global sea‐level change. Science (New York, N.Y.), 310(5752), 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  33. Milliman, J. D., & Farnsworth, K. L. (2013). River discharge to the coastal ocean: A global synthesis. . (p. 392). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  34. Milliman, J. D., & Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology, 100(5), 525–544.
    [Google Scholar]
  35. Mitchum, R. M. (1977). Seismic stratigraphy and global changes of sea level: Part 11. Glossary of terms used in seismic stratigraphy: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. 165, 205–212.
  36. Muto, T., & Steel, R. J. (2000). The accommodation concept in sequence stratigraphy: Some dimensional problems and possible redefinition. Sedimentary Geology, 130(1–2), 1–10. https://doi.org/10.1016/S0037-0738(99)00107-4
    [Google Scholar]
  37. Muto, T., & Steel, R. J. (2004). Autogenic response of fluvial deltas to steady sea‐level fall: Implications from flume‐tank experiments. Geology, 32(5), 401–404. https://doi.org/10.1130/G20269.1
    [Google Scholar]
  38. Muto, T., Steel, R. J., & Burgess, P. M. (2016). Contributions to sequence stratigraphy from analogue and numerical experiments. Journal of the Geological Society, 173(5), 837–844. https://doi.org/10.1144/jgs2015-127
    [Google Scholar]
  39. Nijhuis, A. G., Edmonds, R. L., Caldwell, J. A., Slingerland, R. L., Best, J. L., Parsons, D. R., & Robinson, R. A. J. (2015). Fluvio‐deltaic avulsions during relative sea‐level fall. Geology, 43(8), 719–722. https://doi.org/10.1130/G36788.1
    [Google Scholar]
  40. Olariu, C., & Steel, R. J. (2009). Influence of point‐source sediment‐supply on modern shelf‐slope morphology: Implications for interpretation of ancient shelf margins. Basin Research, 21(5), 484–501.
    [Google Scholar]
  41. Patruno, S., Hampson, G. J., & Jackson, C. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119. https://doi.org/10.1016/j.earscirev.2015.01.004
    [Google Scholar]
  42. Petter, A. L., & Muto, T. (2008). Sustained alluvial aggradation and autogenic detachment of the alluvial river from the shoreline in response to steady fall of relative sea level. Journal of Sedimentary Research, 78(2), 98–111. https://doi.org/10.2110/jsr.2008.012
    [Google Scholar]
  43. Plint, A. G., & Nummedal, D. (2000). The falling stage systems tract: Recognition and importance in sequence stratigraphic analysis. Geological Society, London, Special Publications, 172(1), 1–17. https://doi.org/10.1144/GSL.SP.2000.172.01.01
    [Google Scholar]
  44. Posamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustaticcontrols on clastic deposition II — sequence and systems tractmodels. In: C. K.Wilgus , B. S.Hastings , C. G. S. C.Kendall , H. W.Posa‐mentier , C. A.Ross , & J. C.van Wagoner (Eds.), Sea-level change: An integrated approach (Vol. 42, pp. 109–124). Tulsa, OK: SEPM Special Publications.
    [Google Scholar]
  45. Posamentier, H. W., & Morris, W. R. (2000). Aspects of the stratal architecture of forced regressive deposits. Geological Society, London, Special Publications, 172(1), 19–46. https://doi.org/10.1144/GSL.SP.2000.172.01.02
    [Google Scholar]
  46. Posamentier, H. W., & Vail, P. R. (1988). Eustatic Controls on Clastic Deposition II—sequence and. Systems Tract Models.
    [Google Scholar]
  47. Powell, E. J., Kim, W., & Muto, T. (2012). Varying discharge controls on timescales of autogenic storage and release processes in fluvio‐deltaic environments: Tank experiments. Journal of Geophysical Research: Earth Surface, 117(F2), F02011.
    [Google Scholar]
  48. Prince, G. D., & Burgess, P. M. (2013). Numerical modelling of falling‐stage Topset aggradation: Implications for distinguishing between forced and unforced regressions in the geological record. Journal of Sedimentary Research, 83(9), 767–781.
    [Google Scholar]
  49. Simpson, G., & Castelltort, S. (2012). Model shows that rivers transmit high‐frequency climate cycles to the sedimentary record. Geology, 40(12), 1131–1134. https://doi.org/10.1130/G33451.1
    [Google Scholar]
  50. Sloss, L. L. (1963). Sequences in the cratonic interior of North America. Geological Society of America Bulletin, 74(2), 93–114. https://doi.org/10.1130/0016-7606(1963)74[93:SITCIO]2.0.CO;2
    [Google Scholar]
  51. Sloss, L. L., Krumbein, W. C., & Dapples, E. C. (1949) Integrated facies analysis 1. In Sedimentary facies in geologic history: Conference at meeting of the Geological Society of America held in New York, New York, November 11, 1948 (Vol. 39, p. 91). Geological Society of America.
    [Google Scholar]
  52. Strong, N., & Paola, C. (2008). Valleys that never were: Time surfaces versus stratigraphic surfaces. Journal of Sedimentary Research, 78, 579–593. https://doi.org/10.2110/jsr.2008.059
    [Google Scholar]
  53. Sun, T., Paola, C., Parker, G., & Meakin, P. (2002). Fluvial fan deltas: Linking channel processes with large‐scale morphodynamics. Water Resources Research, 38(8), 26–1‐26–10. https://doi.org/10.1029/2001WR000284
    [Google Scholar]
  54. Swenson, J. B., & Muto, T. (2007). Response of coastal plain rivers to falling relative sea‐level: Allogenic controls on the aggradational phase. Sedimentology, 54(1), 207–221. https://doi.org/10.1111/j.1365-3091.2006.00830.x
    [Google Scholar]
  55. Van den Berg Saparoea, V., & Postma, G. (2008). Control of climate change on the yield of river systems. SEPM Special Publication, 90.
  56. Wheeler, H. E. (1958). Time‐stratigraphy. AAPG Bulletin, 42(5), 1047–1063.
    [Google Scholar]
  57. Zhang, J., Covault, J., Pyrcz, M., Sharman, G. R., Carvajal, C., & Milliken, K. (2018). Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group, Gulf of Mexico. AAPG Bulletin, (20,180,220). https://doi.org/10.1306/01081817308
    [Google Scholar]
  58. Zhang, J., Steel, R., & Olariu, C. (2017). What conditions are required for deltas to reach the shelf edge during rising sea level?Geology, 45(12), 1107–1110. https://doi.org/10.1130/G39676.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12320
Loading
/content/journals/10.1111/bre.12320
Loading

Data & Media loading...

Supplements

 

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error