1887

Abstract

Summary

Foam reduces gas mobility and can help improve sweep efficiency in an enhanced oil recovery process. For the latter, long-distance foam propagation is crucial. In steady gas-liquid flow, foam is generated in homogeneous porous media by exceeding a critical pressure gradient, which normally only happens near the wellbore. Away from wells, these requirements may not be met, and foam propagation is uncertain.

It has been shown theoretically that foam can be generated, independent of pressure gradient, during flow across an abrupt increase in permeability. This could dominate foam generation away from wells in layered or laminated geological formations and can improve the chances of success of a foam application. The objective of this study is to validate theoretical explanations through experimental evidence and to quantify the effect of permeability contrast, velocity and fractional flow on this process.

In this study, we validate theoretical predictions through a variety of experimental evidence. Coreflood experiments involving co-injection of gas and surfactant solution at field-like velocities were performed. Layered, consolidated and well-characterized sintered glass cores were used as the porous media. The permeability change in each core was analogous to sharp, small-scale heterogeneities such as laminations and cross-laminations. The experiments were carefully designed not to allow foam generation by mechanisms other than snap-off at the permeability boundary in the core. Local pressure gradient was measured at various locations and was used to identify foam generation and subsequent propagation through the porous medium. Additionally, X-ray computed tomography (CT) was employed to detect changes in phase saturation that accompany foam generation and subsequent propagation downstream. CT-based saturations measurements were also used to qualitatively chart the reduction in capillary pressure across the sharp permeability jump, supporting theoretical explanations behind this process. The effect of permeability contrast, superficial velocity and flowing gas fraction on this process was also investigated. For a given permeability contrast, foam generation was observed at higher gas fractions than predicted by previous theory ( ). Conditions for propagation of foam were explored by successively performing experiments at lower velocities and higher gas fractional flows. Significant fluctuations in pressure gradient accompanied the process of foam generation, indicating a degree of intermittency in the generation rate - probably reflecting cycles of foam generation, dryout, imbibition, and then generation. The intermittency of foam generation was found to increase with decreasing injection velocities and greater permeability contrasts.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201900147
2019-04-08
2024-03-29
Loading full text...

Full text loading...

References

  1. Armstrong, R. T., McClure, J. E., Berrill, M. A., Rücker, M., Schlüter, S., & Berg, S.
    (2016). Beyond Darcy's Law: The Role of Phase Topology and Ganglion Dynamics for Two-Fluid Flow. Phys. Rev. E, 94(043113).doi: 10.1103/PhysRevE.94.043113
    https://doi.org/10.1103/PhysRevE.94.043113 [Google Scholar]
  2. As Syukri, H.
    (2018). Experimental Study: Foam Generation and Propagation in Flow Across a Permeability Contrast. Delft University of Technology, Delft, The Netherlands.uuid: 961bf2b5-28d5-41e4-9283-a20e1c5d672b
    [Google Scholar]
  3. Ashoori, E., Marchesin, D., & Rossen, W. R.
    (2012). Multiple Foam States and Long-Distance Foam Propagation in Porous Media. SPE J., 17(04), 1231–1245.doi: 10.2118/154024‑PA
    https://doi.org/10.2118/154024-PA [Google Scholar]
  4. Berg, S., Armstrong, R., Ott, H., Georgiadis, A., Klapp, S. A., Schwing, A., …Stampanoni, M
    . (2014). Multiphase Flow in Porous Rock Imaged Under Dynamic Flow Conditions with Fast X-Ray Computed Microtomography. Petrophysics, 55(04), 304–312.
    [Google Scholar]
  5. Chambers, D. J.
    (1994). Foams for Well Stimulation. In L. L. Schramm (Ed.), Foams: Fundamentals and Applications in the Petroleum Industry (Vol. 242, pp. 355–404). American Chemical Society.doi: 10.1021/ba-1994-0242.ch009
    [Google Scholar]
  6. Chambers, K., & Radke, C. J.
    (1990). Capillary Phenomena in Foam Flow through Porous Media. In N. R.Morrow (Ed.) (Vol. 36). Marcel Dekker, Inc.
    [Google Scholar]
  7. Dake, L. P.
    (1994). The Practice of Reservoir Engineering (Vol. 36). Amsterdam: Elsevier.
    [Google Scholar]
  8. Falls, A. H., Hirasaki, G. J., Patzek, T. W., Gauglitz, D. A., Miller, D. D., & Ratulowski, T.
    (1988). Development of a Mechanistic Foam Simulator: The Population Balance and Generation by Snap-Off. SPE Reserv. Eng., 3(03), 884–892.doi: 10.2118/14961‑PA
    https://doi.org/10.2118/14961-PA [Google Scholar]
  9. Farajzadeh, R., Krastev, R., & Zitha, P. L. J.
    (2008). Foam Films Stabilized with Alpha Olefin Sulfonate (AOS). Colloids Surfaces A Physicochem. Eng. Asp., 324(1–3), 35–40. doi: 10.1016/J.COLSURFA.2008.03.024
    https://doi.org/10.1016/J.COLSURFA.2008.03.024 [Google Scholar]
  10. Friedmann, F., Chen, W. H., & Gauglitz, P. A.
    (1991). Experimental and Simulation Study of High-Temperature Foam Displacement in Porous Media. SPE Reserv. Eng., 6(01), 37–45. doi: 10.2118/17357‑PA
    https://doi.org/10.2118/17357-PA [Google Scholar]
  11. Friedmann, F., Smith, M. E., Guice, W. R., Gump, J. M., & Nelson, D. G.
    (1994). Steam-Foam Mechanistic Field Trial in the Midway-Sunset Field. SPE Reserv. Eng., 9(04), 297–304. doi: 10.2118/21780‑PA
    https://doi.org/10.2118/21780-PA [Google Scholar]
  12. Gauglitz, P. A., Friedmann, F., Kam, S. I., & Rossen, W. R.
    (2002). Foam generation in homogeneous porous media. Chem. Eng. Sci., 57(19), 4037–4052.doi: 10.1016/S0009‑2509(02)00340‑8
    https://doi.org/10.1016/S0009-2509(02)00340-8 [Google Scholar]
  13. Gupta, D. V. S. (2009). Unconventional Fracturing Fluids for Tight Gas Reservoirs. In SPE-119424-MS. Presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, 19–21 January.doi: 10.2118/119424-MS
  14. Hartkamp-Bakker, C. A.
    (1993). Permeability heterogeneity in cross-bedded sandstones: Impact on water/oil displacement in fluvial reservoirs. Delft University of Technology. uuid: be8ffa8f-5b66-4c46-932b-56d3eab5823e
    [Google Scholar]
  15. Hirasaki, G. J., Jackson, R. E., Jin, M., Lawson, J. B., Londergan, J., Meinardus, H., …Tanzil, D
    . (2000). Description of Surfactant/Foam Process and Surfactant-Enhanced Aquifer Remediation. In S.Fiorenza, C. A.Miller, C. L.Oubre, & C. H.Ward (Eds.), NAPL Removal: Surfactants, Foams, and Microemulsions (pp. 7–10). Boca Raton: CRC Press. doi: 10.1201/9781420026207.pt1
    https://doi.org/10.1201/9781420026207.pt1 [Google Scholar]
  16. Hirasaki, G. J., Miller, C. A., Szafranski, R., Tanzil, D., Lawson, J. B., Meinardus, H., …Wade
    , W. H. (1997). Field Demonstration of the Surfactant / Foam Process for Aquifer Remediation. Society of Petroleum Engineers, (October2015).doi: 10.2118/39292‑MS
    https://doi.org/10.2118/39292-MS [Google Scholar]
  17. Kahrobaei, S., Vincent-Bonnieu, S., & Farajzadeh, R.
    (2017). Experimental Study of Hysteresis Behavior of Foam Generation in Porous Media. Sci. Reports, 7(1), 8986.doi: 10.1038/s41598‑017‑09589‑0
    https://doi.org/10.1038/s41598-017-09589-0 [Google Scholar]
  18. Kam, S. I., & Rossen, W. R.
    (2003). A Model for Foam Generation in Homogeneous Media. SPE J., 8(4), 417–425. doi: 10.2118/87334‑PA
    https://doi.org/10.2118/87334-PA [Google Scholar]
  19. Katz, A. J., & Thompson, A. H.
    (1986). Quantitative Prediction of Permeability in Porous Rock. Phys. Rev. B, 34(11), 8179–8181.doi: 10.1103/PhysRevB.34.8179
    https://doi.org/10.1103/PhysRevB.34.8179 [Google Scholar]
  20. Kovscek, A. R., & Radke, C. J.
    (1994). Fundamentals of Foam Transport in Porous Media. In L. L.Schramm (Ed.) (Vol. 242, pp. 115–163). Washington, DC: American Chemical Society. doi: 10.1021/ba‑1994‑0242.ch003
    https://doi.org/10.1021/ba-1994-0242.ch003 [Google Scholar]
  21. Lake, L. W., Johns, R.T., Rossen, W.R., & Pope, G.
    (2014). Fundamentals of Enhanced Oil Recovery. Richardson, Texas: Society of Petroleum Engineers.
    [Google Scholar]
  22. Lenormand, R., Zarcone, C., & Sarr, A.
    (1983). Mechanisms of the Displacement of One Fluid by Another in a Network of Capillary Ducts. J. Fluid Mech., 135, 337–353. doi: 10.1017/S0022112083003110
    https://doi.org/10.1017/S0022112083003110 [Google Scholar]
  23. Leverett, M. C.
    (1941). Capillary Behavior in Porous Solids. Transactions of the AIME, 142(01), 152–169. doi: 10.2118/941152‑G
    https://doi.org/10.2118/941152-G [Google Scholar]
  24. Li, Q., & Rossen, W. R.
    (2005). Injection Strategies for Foam Generation in Homogeneous and Layered Porous Media. Presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, 9–12 October.doi: 10.2118/96116-MS
    [Google Scholar]
  25. Lyons, W. C., Guo, B., Graham, R. L., & Hawley, G. D.
    (2009). Air and Gas Drilling Manual (Third Edition). Gulf Professional Publishing.doi: 10.1016/B978-0-12-370895-3.X0001-6
    [Google Scholar]
  26. Ma, K., Farajzadeh, R., Lopez-Salinas, J. L., Miller, C. A., Biswal, S. L., & Hirasaki, G. J.
    (2014). Non-uniqueness, Numerical Artifacts, and Parameter Sensitivity in Simulating Steady-State and Transient Foam Flow Through Porous Media. Transp. Porous Media, 102(3), 325–348. doi: 10.1007/s11242‑014‑0276‑9
    https://doi.org/10.1007/s11242-014-0276-9 [Google Scholar]
  27. Ma, K., Lopez-Salinas, J. L., Puerto, M. C., Miller, C. A., Biswal, S. L., & Hirasaki, G. J.
    (2013). Estimation of Parameters for the Simulation of Foam Flow through Porous Media. Part 1: The Dry-Out Effect. Energy Fuels, 27(5), 2363–2375.doi: 10.1021/ef302036s
    https://doi.org/10.1021/ef302036s [Google Scholar]
  28. McCool, C. S., Parmeswar, R., & Willhite, G. P.
    (1983). Interpretation of Differential Pressure in Laboratory Surfactant/Polymer Displacements. SPE J., 23(05), 791–803. doi: 10.2118/10713‑PA
    https://doi.org/10.2118/10713-PA [Google Scholar]
  29. Mees, F., Swennen, R., & Geet, M. Van. (2003). Applications of X-ray Computed Tomography in the Geosciences. Geological Society,. Geol. Soc. Special Publication 215, 1–6, doi: 10.1144/GSL.SP.2003.215.01.01.
  30. Nabawy, B. S., Géraud, Y., Rochette, P., & Bur, N.
    (2009). Pore-throat Characterization in Highly Porous and Permeable Sandstones. Am. Assoc. Pet. Geol. Bull., 93(6), 719–739. doi: 10.1306/03160908131
    https://doi.org/10.1306/03160908131 [Google Scholar]
  31. Reineck, H. E., & Singh, J. B.
    (1980). Depositional Sedimentary Environments. Berlin, Heidelberg: Springer Berlin Heidelberg.doi: 10.1007/978‑3‑642‑96291‑2
    https://doi.org/10.1007/978-3-642-96291-2 [Google Scholar]
  32. Rossen, W. R.
    (1996). Foams in Enhanced Oil Recovery. In R. K.Prud'homme & S. A.Khan (Eds.), Foams: Theory, Measurements and Applications (Vol. 57, pp. 413–464). New York: Marcel Dekker.doi: 10.1201/9780203755709
    https://doi.org/10.1201/9780203755709 [Google Scholar]
  33. (1999). Foam Generation at Layer Boundaries in Porous Media. SPE J., 4(04), 409–412. doi: 10.2118/59395‑PA
    https://doi.org/10.2118/59395-PA [Google Scholar]
  34. (2003). A Critical Review of Roof Snap-Off as a Mechanism of Steady-State Foam Generation in Homogeneous Porous Media. Colloids Surfaces A: Physicochem. Eng. Asp., 225(1–3), 1–24.doi: 10.1016/S0927‑7757(03)00309‑1
    https://doi.org/10.1016/S0927-7757(03)00309-1 [Google Scholar]
  35. Rossen, W. R., & Gauglitz, P. A.
    (1990). Percolation theory of creation and mobilization of foams in porous media. AIChE J., 36(8), 1176–1188.doi: 10.1002/aic.690360807
    https://doi.org/10.1002/aic.690360807 [Google Scholar]
  36. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., …Cardona, A
    . (2012). Fiji: An Open-source Platform for Biological-image Analysis. Nat. Methods, 9(7), 676–682.doi: 10.1038/nmeth.2019
    https://doi.org/10.1038/nmeth.2019 [Google Scholar]
  37. Schowalter, T. T.
    (1979). Mechanics of Secondary Hydrocarbon Migration and Entrapment. AAPG Bulletin, 5(0149), 723–760. doi: 10.1306/2F9182CA‑16CE‑11D7‑8645000102C1865D
    https://doi.org/10.1306/2F9182CA-16CE-11D7-8645000102C1865D [Google Scholar]
  38. Shah, S. Y., Wolf, K.-H., Pilus, R., & Rossen, W. R. (2018). Foam Generation by Capillary Snap-off in Flow Across a Sharp Permeability Transition. SPE Journal (in press; posted 31 December 2018).doi: 10.2118/190210-PA.
  39. Tanzil, D., Hirasaki, G. J., & Miller, C. A.
    (2002). Conditions for Foam Generation in Homogeneous Porous Media. Presented at the SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, 13–17 April. doi: 10.2118/75176‑MS
    https://doi.org/10.2118/75176-MS
  40. (2002). Mobility of Foam in Heterogeneous Media: Flow Parallel and Perpendicular to Stratification. SPE Journal, 7(02), 203–212. doi: 10.2118/78601‑PA
    https://doi.org/10.2118/78601-PA [Google Scholar]
  41. Yang, J., & Siddiqui, S.
    (1999). The Use Of Foam To Improve Liquid Lifting From Low-Pressure Gas Wells. In PETSOC-99-126. Presented at the Petroleum Conference of The South Saskatchewan Section, Regina, Saskatchewan, October18–21.doi: 10.2118/99‑126
    https://doi.org/10.2118/99-126 [Google Scholar]
  42. Yortsos, Y. C., & Chang, J.
    (1990). Capillary Effects in Steady-state Flow in Heterogeneous Cores. Transp. Porous Media, 5(4), 399–420.doi: 10.1007/BF01141993
    https://doi.org/10.1007/BF01141993 [Google Scholar]
  43. Yu, G., Vincent-Bonnieu, S., Rossen, W. R.
    (2018). Foam Propagation at Low Superficial Velocity: Implications for Long-Distance Foam Propagation. Presented at the EAGE Improved Oil recovery Conference, Pau, France, April8–11.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201900147
Loading
/content/papers/10.3997/2214-4609.201900147
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error