1887

Abstract

Summary

The article briefly discusses the geological structure of the Maxutov complex developed in the southern part of the Uraltau zone (South Ural). Particular attention is paid to the carbonaceous deposits widely represented in its composition (graphitic quartzites, micaceous-graphite-quartz schists). It is shown that they belong to the low-carbon type and very compactly fall into the field of a siliceous-carbon formation. The article notes that the carbonaceous matter presented in the form of streaky and scaly graphite precipitates has a biogenic nature and has undergone metamorphism until the eclogitic facies.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201900600
2019-03-25
2024-04-27
Loading full text...

Full text loading...

References

  1. АлексеевА.А., АлексееваГ.В.
    Графитовый эклогит из максютовского метаморфического ком-плекса, Южный Урал // Доклады РАН. 2000. Т. 372, No1, с. 86–88.
    [Google Scholar]
  2. БлюманБ.А. ДьяконовЮ.С., КрасавинаТ.Н., ПавловМ.Г.
    Использование термо- и рентгено-графических характеристик графита для определения уровня и типа метаморфизма. Записки Всесо-юзного Минералогического общества. 1974. ч. 103, вып. 1, С. 95–103.
    [Google Scholar]
  3. КовалевС.Г., ТимофееваВ.А., ПиндюринаЕ.О.
    Геохимия эклогитов максютовского комплекса (Южный Урал) и генетическая природа их протолитов // Геохимия, 2015. No4. С. 299–327. DOI: 10.7868/S0016752515040044
    https://doi.org/10.7868/S0016752515040044 [Google Scholar]
  4. КовалевС.Г., ТимофееваЕ.А., ПиндюринаЕ.О., КовалевС.С.
    Геохимия и условия образования эклогитов максютовского комплекса // Геологический сборник No 9. Информационные материалы. Уфа: ДизайнПолиграфСервис, 2011. с. 236–245.
    [Google Scholar]
  5. ПоцелуевА.А.
    Углеродистые вещества в гидротермальных урановых и редкометальных место-рождениях // Известия Томского политехнического университета2010. Т. 316. No1, С. 16–23.
    [Google Scholar]
  6. ПучковВ.Н.
    Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.
    [Google Scholar]
  7. ЮдовичЯ.Э., КетрисМ.П.
    Геохимия черных сланцев. Л.: Наука, 1988. 271 с.
    [Google Scholar]
  8. BostickB. C., JonesR.E., ErnstW.G., ChenC., LeechM. L. and BeaneR. J.
    Low-temperature microdiamond aggregates in the Maksyutov Metamorphic Complex, South Ural Mountains, Russia // American Mineralogist, 2003. V. 88. P. 1709–1717.
    [Google Scholar]
  9. BuseckP.R. and BeyssacO.
    From organic matter to graphite: graphitization. Elements, 2014. 10, P. 421–426.
    [Google Scholar]
  10. JavoyM., PineauF., and DelormeH.
    Carbon and nitrogen isotopes in the mantle. Chemical Geology, 1986. 57, P. 41–62.
    [Google Scholar]
  11. Kirilova, M., Toy, V., Timms, N., Halfpenny, A., Menzies, C., Craw, D., Beyssac, O., Sutherland, R., Townend, J., Boulton, C., Carpenter, B., Cooper, A., Grieve, J., Little, T., Morales, L., Morgan, C., Mori, H., Sauer, K., Schleicher, A., Williams, J., and Craw, L.
    : Textural changes of graphitic carbon by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand, in: Geological Society, London, Special Publication “Advances in the Characterization of Ore-Forming Systems from Geo-logical, Geochemical and Geophysical data”, 2017. P 223–231.
    [Google Scholar]
  12. LeechM. L., ErnstW. G.
    Petrotectonic evolution of the high to ultrahigh-pressure Maksyutov Complex, Karayanova area, south Ural Mountains: structural and oxygen isotope constraints // Lithos, 2000. V. 52. P 235–253.
    [Google Scholar]
  13. Leech, M.L., Ernst, W.G.
    Graphite pseudomorphs after diamond? A carbon isotope and spectroscopic study of graphite cuboids from the Maksyutov Complex, south Ural Mountains, Russia. Geochim. Cosmochim, 1998. Acta 62, P. 2143–2154.
    [Google Scholar]
  14. AlekseevA.A., AlekseevaG.V.
    Graphite eclogite from the Maxutov metamorphic complex, Southern Urals // Doklady Earth Sciences. 2000. V. 372, № 1, p. 86–88.
    [Google Scholar]
  15. BlumanB.A. DyakonovYu.S., KrasavinaTN
    , Pavlov MG The use of thermal and radiographic char-acteristics of graphite to determine the level and type of metamorphism // Zapiski Vsesojuznogo Miner-alogicheskogo obshhestva. 1974. 103, vol. 1, p. 95–103.
    [Google Scholar]
  16. KovalevS.G., TimofeevaV.A., PindjurinaE.O.
    Geochemistry of the eclogites of the Maksyutov complex, Southern Urals, and genetic nature of their protoliths // Geohimija, 2015. № 4. P. 299–327.
    [Google Scholar]
  17. KovalevS.G., TimofeevaE.A., PindyurinaE.O., KovalevS.S.
    Geochemistry and conditions for the formation of eclogites of the Maxutov complex // Geologicheskij sbornik №9. Informacionnye materialy. Ufa: DizajnPoligrafServis, 2011. p. 236–245.
    [Google Scholar]
  18. PoceluevA.A.
    Carbonaceous substances in hydrothermal uranium and rare-metal deposits // Bulletin of Tomsk Polytechnic University 2010. T. 316. No. 1, P. 16–23.
    [Google Scholar]
  19. PuchkovV.N.
    Geology of the Urals and Urals (current issues of stratigraphy, tectonics, geodynamics and metallogeny)Ufa: DizajnPoligrafServis, 2010. 280 p.
    [Google Scholar]
  20. JudovichJa.Je., KetrisM.P.
    Geochemistry of black shale. L.: Science, 1988. 271 p.
    [Google Scholar]
  21. BostickB. C., JonesR.E., ErnstW.G., ChenC., LeechM. L. and BeaneR. J.
    Low-temperature mi-crodiamond aggregates in the Maksyutov Metamorphic Complex, South Ural Mountains, Russia // American Mineralogist, 2003. V. 88. P. 1709–1717.
    [Google Scholar]
  22. BuseckP.R. and BeyssacO.
    From organic matter to graphite: graphitization. Elements, 2014. 10, P. 421–426.
    [Google Scholar]
  23. JavoyM., PineauF., and DelormeH.
    Carbon and nitrogen isotopes in the mantle. Chemical Geology, 1986. 57, P. 41–62.
    [Google Scholar]
  24. Kirilova, M., Toy, V., Timms, N., Halfpenny, A., Menzies, C., Craw, D., Beyssac, O., Sutherland, R., Townend, J., Boulton, C., Carpenter, B., Cooper, A., Grieve, J., Little, T., Morales, L., Morgan, C., Mori, H., Sauer, K., Schleicher, A., Williams, J., and Craw, L.
    : Textural changes of graphitic carbon by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand, in: Geological Society, London, Special Publication “Advances in the Characterization of Ore-Forming Systems from Geo-logical, Geochemical and Geophysical data”, 2017. P 223–231.
    [Google Scholar]
  25. LeechM. L., ErnstW. G.
    Petrotectonic evolution of the high to ultrahigh-pressure Maksyutov Complex, Karayanova area, south Ural Mountains: structural and oxygen isotope constraints // Lithos, 2000. V. 52. P 235–253.
    [Google Scholar]
  26. Leech, M.L., Ernst, W.G.
    Graphite pseudomorphs after diamond? A carbon isotope and spectroscopic study of graphite cuboids from the Maksyutov Complex, south Ural Mountains, Russia. Geochim. Cosmochim, 1998. Acta 62, P. 2143–2154.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201900600
Loading
/content/papers/10.3997/2214-4609.201900600
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error