1887

Abstract

Summary

Small angle neutron scattering has been combined with supercritical methane sorption resulting in a collection of isothermal scattering curves for Opalinus Clay, Posidonia Shale and Eagleford Shale. Scattering data have been analyzed with respect to sorbed phase behavior for which a two- and three-phase model have been used. The two-phase model clearly indicates the formation of a sorbed phase of which properties like density and volume fraction change with pore size. Application of the three-phase model yields sorbed phase densities higher than the bulk density of methane as predicted by the equation of state provided by NIST. Current work focuses on implementing localized density calculations in order to quantify the effect of pore size on the sorbed phase properties.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201900310
2019-04-28
2024-04-23
Loading full text...

Full text loading...

References

  1. Bahadur, J., Ruppert, L.F., Pipich, V., Sakurovs, R. and Melnichenko, Y.B.
    , 2018. Porosity of the Marcellus Shale: A contrast matching small-angle neutron scattering study. International Journal of Coal Geology, 188, pp.156–164.
    [Google Scholar]
  2. Busch, A. and Gensterblum, Y.
    , 2011. CBM and CO2-ECBM related sorption processes in coal: a review. International Journal of Coal Geology, 87(2), pp.49–71.
    [Google Scholar]
  3. Chathoth, S.M., Mamontov, E., Melnichenko, Y.B. and Zamponi, M.
    , 2010. Diffusion and adsorption of methane confined in nanoporous carbon aerogel: A combined quasi-elastic and small-angle neutron scattering study. Microporous and Mesoporous Materials, 132(1–2), pp.148–153.
    [Google Scholar]
  4. Eberle, A.P., King, H.E., Ravikovitch, P.I., Walters, C.C., Rother, G. and Wesolowski, D.J.
    , 2016. Direct measure of the dense methane phase in gas shale organic porosity by neutron scattering. Energy & Fuels, 30(11), pp.9022–9027.
    [Google Scholar]
  5. Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S. and Krooss, B.M.
    , 2012. High-pressure methane sorption isotherms of black shales from the Netherlands. Energy & fuels, 26(8), pp.4995–5004.
    [Google Scholar]
  6. Gasparik, M., Ghanizadeh, A., Gensterblum, Y. and Krooss, B.M.
    , 2013. “Multi-temperature” method for high-pressure sorption measurements on moist shales. Review of Scientific Instruments, 84(8), p. 085116.
    [Google Scholar]
  7. Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B.M. and Littke, R.
    , 2014. Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, pp.34–51.
    [Google Scholar]
  8. Gasparik, M., Gensterblum, Y., Ghanizadeh, A., Weniger, P. and Krooss, B.M.
    , 2015. High-pressure/high-temperature methane-sorption measurements on carbonaceous shales by the manometric method: experimental and data-evaluation considerations for improved accuracy. SPE Journal, 20(04), pp.790–809.
    [Google Scholar]
  9. Gensterblum, Y., Van Hemert, P., Billemont, P., Busch, A., Charriere, D., Li, D., Krooss, B.M., De Weireld, G., Prinz, D. and Wolf, K.H.
    , 2009. European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon. Carbon, 47(13), pp.2958–2969.
    [Google Scholar]
  10. Gensterblum, Y., Van Hemert, P., Billemont, P., Battistutta, E., Busch, A., Krooss, B.M., De Weireld, G. and Wolf, K.H.
    , 2010. European inter-laboratory comparison of high pressure CO2 sorption isotherms II: Natural coals. International Journal of Coal Geology, 84(2), pp.115–124.
    [Google Scholar]
  11. Hjelm, R.P., Wampler, W.A., Seeger, P.A. and Gerspacher, M.
    , 1994. The microstructure and morphology of carbon black: A study using small angle neutron scattering and contrast variation. Journal of materials research, 9(12), pp.3210–3222.
    [Google Scholar]
  12. Marr, D.W.M., Wartenberg, M., Schwartz, K.B., Agamalian, M.M. and Wignall, G.D.
    , 1997. Void morphology in polyethylene/carbon black composites. Macromolecules, 30(7), pp.2120–2124.
    [Google Scholar]
  13. Mastalerz, M., He, L., Melnichenko, Y.B. and Rupp, J.A.
    , 2012. Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques. Energy & Fuels, 26(8), pp.5109–5120.
    [Google Scholar]
  14. Melnichenko, Y.B., Wignall, G.D., Cole, D.R. and Frielinghaus, H.
    , 2006. Adsorption of supercritical CO 2 in aerogels as studied by small-angle neutron scattering and neutron transmission techniques. The Journal of chemical physics, 124(20), p. 204711.
    [Google Scholar]
  15. Melnichenko, Y.B., Radlinski, A.P., Mastalerz, M., Cheng, G. and Rupp, J.
    , 2009. Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS). International Journal of Coal Geology, 77(1–2), pp.69–79.
    [Google Scholar]
  16. Melnichenko, Y.B. and Wignall, G.D.
    , 2009. Density and volume fraction of supercritical CO2 in pores of native and oxidized aerogels. International Journal of Thermophysics, 30(5), p. 1578.
    [Google Scholar]
  17. Melnichenko, Y.B., He, L., Sakurovs, R., Kholodenko, A.L., Blach, T., Mastalerz, M., Radliński, A.P., Cheng, G. and Mildner, D.F.
    , 2012. Accessibility of pores in coal to methane and carbon dioxide. Fuel, 91(1), pp.200–208.
    [Google Scholar]
  18. Radliński, A.P., Boreham, C.J., Lindner, P., Randl, O., Wignall, G.D., Hinde, A. and Hope, J.M.
    , 2000. Small angle neutron scattering signature of oil generation in artificially and naturally matured hydrocarbon source rocks. Organic Geochemistry, 31(1), pp.1–14.
    [Google Scholar]
  19. Rother, G., Melnichenko, Y.B., Cole, D.R., Frielinghaus, H. and Wignall, G.D.
    , 2007. Microstructural characterization of adsorption and depletion regimes of supercritical fluids in nanopores. The Journal of Physical Chemistry C, 111(43), pp.15736–15742.
    [Google Scholar]
  20. Rother, G., Krukowski, E.G., Wallacher, D., Grimm, N., Bodnar, R.J. and Cole, D.R.
    , 2011. Pore size effects on the sorption of supercritical CO2 in mesoporous CPG-10 silica. The Journal of Physical Chemistry C, 116(1), pp.917–922.
    [Google Scholar]
  21. Ruppert, L.F., Sakurovs, R., Blach, T.P., He, L., Melnichenko, Y.B., Mildner, D.F. and Alcantar-Lopez, L.
    , 2013. A USANS/SANS study of the accessibility of pores in the Barnett Shale to methane and water. Energy & Fuels, 27(2), pp.772–779.
    [Google Scholar]
  22. Sakurovs, R., Koval, L., Grigore, M., Sokolova, A., Ruppert, L.F. and Melnichenko, Y.B.
    , 2018. Nanometre-sized pores in coal: Variations between coal basins and coal origin. International Journal of Coal Geology, 186, pp.126–134.
    [Google Scholar]
  23. Wu, W.L.
    , 1982. Small-angle X-Ray study of particulate reinforced composites. Polymer, 23(13), pp.1907–1912.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201900310
Loading
/content/papers/10.3997/2214-4609.201900310
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error