1887
Volume 31, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Interplays among diachronous tectonism, uneven sediment supply, and local marine hydraulic processes make the northern margin of the South China Sea (SCS) an ideal location to investigate the complexity of along‐strike variability in shelf margins. This study examines shelf‐margin morphology, stratigraphy, and sedimentation from the northern SCS using multichannel seismic reflection profiles complemented with the data from commercial and ocean drilling sites. Analysis of seismic reflection profiles reveals three categories of shelf‐margin cross‐sectional profiles, the concave‐up, linear, and sigmoidal, according to which five margin sectors were recognized. Results show that these margin segments differ in relief, shelf‐edge trajectory, submarine canyon development, and long‐term accretion pattern. The westernmost margin sector, or the Yinggehai (YGH)‐western Qiongdongnan (QDN) margin, has appeared to be supply dominated since its commencement at ca. 10.5 Ma, which is characterized by well‐developed prograding clinoforms, low‐angle shelf‐edge trajectories, and an absence of canyons. Presence of concave‐up profiles is also suggestive of high sediment influx. In contrast, the eastern QDN margin was primarily regulated by local subsidence and faulting, leading to a stationary shelf‐edge migrating pattern and linear upper‐slope morphology. Densely distributed slope‐confined gullies indicate the margin’s disequilibrium and erosive nature. Further east, the Pearl River Mouth (PRM) margin formed much earlier (ca. 30 Ma) and experienced a more complicated accretion history, including three phases which were dominated by sequential marginal faulting (before ca. 30 Ma), basement structure (ca. 30–23 Ma), and sediment supply (ca. 23 Ma to the present). The overall sigmoidal morphology and truncated stratigraphy of this margin probably resulted from the sculpting of local marine processes, especially ocean currents and internal waves. The exception of the central PRM margin where concave‐up profiles develop is mainly related to canyon erosion. Overall, this study highlights the vital role of local forcing factors in controlling along‐margin variations and determining the final fates of different margin segments. A comparison between the northern SCS and other well‐established examples reveals that concave‐upward shelf‐margin shapes, which are usually associated with high sediment supply, little influence from hydraulic regimes, or sometimes, high degree of canyon development, may be an indicator of good reservoir potential beyond the shelf edge.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12329
2018-12-09
2024-03-28
Loading full text...

Full text loading...

References

  1. Adams, E. W., Morsilli, M., Schlager, W., Keim, L., & Hoek, T. V. (2002). Quantifying the geometry and sediment fabric of linear slopes: Examples from the Tertiary of Italy (Southern Alps and Gargano Promontory). Sedimentary Geology, 154, 11–460. https://doi.org/10.1016/S0037-0738(02)00125-2
    [Google Scholar]
  2. Adams, E. W., & Schlager, W. (2000). Basic types of submarine slope curvature. Journal of Sedimentary Research, 70, 814–828. https://doi.org/10.1306/2DC4093A-0E47-11D7-8643000102C1865D
    [Google Scholar]
  3. Adams, E. W., Schlager, W., & Wattel, E. (1998). Submarine slopes with an exponential curvature. Sedimentary Geology, 117, 135–141. https://doi.org/10.1016/S0037-0738(98)00044-X
    [Google Scholar]
  4. Alford, M. H., Lien, R. C., Simmons, H., Klymak, J., Ramp, S., Yang, Y. J., … Chang, M. H. (2010). Speed and evolution of nonlinear internal waves transiting the South China Sea. Journal of Physical Oceanography, 40, 1338–1355. https://doi.org/10.1175/2010JPO4388.1
    [Google Scholar]
  5. Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centuroni, L. R., … Tang, T.‐Y. (2015). The formation and fate of internal waves in the South China Sea. Nature, 521, 65–69. https://doi.org/10.1038/nature14399
    [Google Scholar]
  6. Amante, C., & Eakins, B. W. (2009). ETOPO1 1 Arc‐Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC‐24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M
  7. Anell, I., & Midtkandal, I. (2017). The quantifiable clinothem – types, shapes and geometric relationships in the Plio‐Pleistocene Giant Foresets Formation, Taranaki Basin. New Zealand. Basin Research, 29(Suppl. 1), 227–297. https://doi.org/10.1111/bre.12149
    [Google Scholar]
  8. Anell, I., Midtkandal, I., & Braathen, A. (2014). Trajectory analysis and inferences on geometric relationships of an Early Triassic prograding clinoform succession on the northern Barents Shelf. Marine and Petroleum Geology, 54, 167–179. https://doi.org/10.1016/j.marpetgeo.2014.03.005
    [Google Scholar]
  9. Briais, A., Patriat, P., & Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research, 98(B4), 6299–6328.
    [Google Scholar]
  10. Cacchione, D. A., Pratson, L. F., & Ogston, A. S. (2002). The shaping of continental slopes by internal tides. Science, 296, 724–727. https://doi.org/10.1126/science.1069803
    [Google Scholar]
  11. Cai, S. Q., He, J., & Xie, J. (2011). Recent decadal progress of the study on internal solitons in the South China Sea. Advances in Earth Science, 26, 703–710.
    [Google Scholar]
  12. Carvajal, C. R., & Steel, R. (2006). Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–668. https://doi.org/10.1130/G22505.1
    [Google Scholar]
  13. Carvajal, C., Steel, R., & Petter, A. (2009). Sediment supply: The main driver of shelf‐margin growth. Earth‐Science Review, 96, 221–248. https://doi.org/10.1016/j.earscirev.2009.06.008
    [Google Scholar]
  14. Centurioni, L. R., Niiler, P. P., & Lee, D. K. (2004). Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. Journal of Physical Oceanography, 34, 113–121. https://doi.org/10.1175/1520-0485(2004)034<0113:OOIOPS>2.0.CO;2
    [Google Scholar]
  15. Chen, H., Zhan, W., & Wu, S. (2016). Response of geomorphic and geological processes to insufficient and ample sediment supply along the upper continental slope in the north‐western South China Sea. Journal of Earth System Science, 125, 1635–1655. https://doi.org/10.1007/s12040-016-0763-1
    [Google Scholar]
  16. Chen, P. P. H., Chen, Z. Y., & Zhang, Q. M. (1993). Sequence stratigraphy and continental margin development of the Northwestern Shelf of the South China Sea. AAPG Bulletin, 77, 842–862.
    [Google Scholar]
  17. Clift, P. D., & Sun, Z. (2006). The sedimentary and tectonic evolution of the Yinggehai‐Song Hong basin and the southern Hainan margin, South China Sea: Implications for Tibetan uplift and monsoon intensification. Journal of Geophysical Research, 111(B06405), 431–24. https://doi.org/10.1029/2005JB004048
    [Google Scholar]
  18. Covault, J. A., Fildani, A., Romans, B. W., & McHargue, T. (2011). The natural range of submarine canyon‐and‐channel longitudinal profiles. Geosphere, 7, 313–332. https://doi.org/10.1130/GES00610.1
    [Google Scholar]
  19. Crabaugh, J. P., & Steel, R. J. (2004). Basin‐floor fans of the Central Tertiary Basin, Spitsbergen: Relationship of basin‐floor sand‐bodies to prograding clinoforms in a structurally active basin. In L. S.Lomas & P.Joseph (Eds.), Confined turbidite systems (pp. 187–208). London: Geological Society.
    [Google Scholar]
  20. Ding, W., Li, J. B., & Li, J. (2010). Forming mechanism of the submarine canyon on the northern slope of the South China Sea. Journal of Marine Sciences, 28, 26–31 (in Chinese with English abstract).
    [Google Scholar]
  21. Emery, K. O. (1980). Continental margins‐Classification and petroleum prospects. AAPG Bulletin, 64, 297–315.
    [Google Scholar]
  22. Fang, G., Wang, Y., Wei, Z., Fang, Y., Qiao, F., & Hu, X. (2009). Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dynamics of Atmosphere and Oceans, 47, 55–72. https://doi.org/10.1016/j.dynatmoce.2008.09.003
    [Google Scholar]
  23. Franke, D. (2013). Rifting, lithosphere breakup and volcanism: Comparison of magma‐poor and volcanic rifted margins. Marine and Petroleum Geology, 43, 63–87. https://doi.org/10.1016/j.marpetgeo.2012.11.003
    [Google Scholar]
  24. Gamboa, D., Alves, T., Cartwright, J., & Terrinha, P. (2010). MTD distribution on a ‘passive’ continental margin: The Espírito Santo Basin (SE Brazil) during the Paleogene. Marine and Petroleum Geology, 27, 1311–1324.
    [Google Scholar]
  25. Gong, C., Wang, Y., Zheng, R., Hernández‐Molina, F. J., Li, Y., Stow, D., … Brackenridge, R. E. (2016). Middle Miocene reworked turbidites in the Baiyun Sag of the Pearl River Mouth Basin, northern South China Sea margin: Processes, genesis, and implications. Journal of Asian Earth Sciences, 128, 116–129. https://doi.org/10.1016/j.jseaes.2016.06.025
    [Google Scholar]
  26. Gong, Z., Li, S., Xie, T., Zhang, Q., Xu, S., Xia, K., … Liu, L. (1997). Continental margin basin analysis and hydrocarbon accumulation of the Northern South China Sea (510 pp). Beijing, China: Science Press.
  27. Han, J., Xu, G., Li, Y., & Zhuo, H. (2016). Evolutionary history and controlling factors of the shelf breaks in the Pearl River Mouth Basin, northern South China Sea. Marine and Petroleum Geology, 77, 179–189. https://doi.org/10.1016/j.marpetgeo.2016.06.009
    [Google Scholar]
  28. Hao, Y., Chen, P., Wan, X., & Dong, J. (2000). Late Tertiary sequence stratigraphy and sea level changes in Yinggehai‐Qiongdongnan Basin. Geoscience, 14, 237–245.
    [Google Scholar]
  29. Harris, P. T., & Whiteway, T. (2011). Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285, 69–86. https://doi.org/10.1016/j.margeo.2011.05.008
    [Google Scholar]
  30. He, M., Zhuo, H., Chen, W., Wang, Y., Du, J., Liu, L., … Wan, H. (2017). Sequence stratigraphy and depositional architecture of the Pearl River Delta system, northern South China Sea: An interactive response to sea level, tectonics and paleoceanography. Marine and Petroleum Geology, 84, 76–101. https://doi.org/10.1016/j.marpetgeo.2017.03.022
    [Google Scholar]
  31. He, Y., Xie, X. N., Kneller, B. C., Wang, Z., & Li, X. (2012). Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin, northern South China Sea. Marine and Petroleum Geology, 41, 264–276. https://doi.org/10.1016/j.marpetgeo.2012.03.002
    [Google Scholar]
  32. Hedberg, H. D. (1970). Continental margins from viewpoint of the petroleum geologist. AAPG Bulletin, 54, 3–43.
    [Google Scholar]
  33. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21, 454–483. https://doi.org/10.1111/j.1365-2117.2009.00425.x
    [Google Scholar]
  34. Helland‐Hansen, W., & Martinsen, O. J. (1996). Shoreline trajectories and sequences: Description of variable depositional‐dip scenarios. Journal of Sedimentary Research, 66, 670–688.
    [Google Scholar]
  35. Helland‐Hansen, W., Steel, R. J., & Sømme, T. O. (2012). Shelf genesis revisited. Journal of Sedimentary Geology, 82, 133–148. https://doi.org/10.2110/jsr.2012.15
    [Google Scholar]
  36. Henriksen, S., Helland‐Hansen, W., & Bullimore, S. (2011). Relationships between shelf‐edge trajectories and sediment dispersal along depositional dip and strike: A different approach to sequence stratigraphy. Basin Research, 23, 3–21. https://doi.org/10.1111/j.1365-2117.2010.00463.x
    [Google Scholar]
  37. Hsu, M. K., & Liu, A. K. (2000). Nonlinear internal waves in the South China Sea. Canadian Journal of Remote Sensing, 26, 72–81. https://doi.org/10.1080/07038992.2000.10874757
    [Google Scholar]
  38. Hsu, S. K., Yeh, Y. C., Doo, W. B., & Tsai, C. H. (2004). New bathymetry and magnetic lineations identifications in the Northernmost South China Sea and their tectonic implications. Marine Geophysical Research, 25, 29–44. https://doi.org/10.1007/s11001-005-0731-7
    [Google Scholar]
  39. Hu, J., Kawamura, H., Hong, H., & Qi, Y. (2000). A review on the currents in the South China Sea: Seasonal circulation, South China Sea Warm Current and Kuroshio Intrusion. Journal of Oceanography, 56, 607–624.
    [Google Scholar]
  40. Huang, C. Y., Yen, Y., Zhao, Q. H., Liu, P. M., Lin, Y. J., Lin, Q. T., & Xie, K. X. (2012). Cenozoic stratigraphy of Taiwan: Looking into rifting, stratigraphy and paleoceanography of South China Sea. China Science Bulletin, 57, 1842–1862.
    [Google Scholar]
  41. Huang, Z., Zhang, W., & Cai, F. (1995). The submerged Zhujiang Delta. Acta Geographica Sinica, 50, 206–214 (in Chinese with English abstract).
    [Google Scholar]
  42. Ingersoll, R. V., & Graham, S. A. (1983). Recognition of the shelf‐slope break along ancient tectonically active continental margins. In D. J.Stanley & G. T.Moore (Eds.), The shelfbreak: Critical interface on Continental margins (pp. 107–117). Tulsa, OK: SEPM Special Publication.
    [Google Scholar]
  43. Johannessen, E. P., & Steel, R. J. (2005). Shelf‐margin clinoforms and prediction of deepwater sands. Basin Research, 15, 521–550. https://doi.org/10.1111/j.1365-2117.2005.00278.x
    [Google Scholar]
  44. Jones, G. E. D., Hodgson, D. M., & Flint, S. S. (2013). Contrast in the process response of stacked clinothems to the shelf‐slope rollover. Geosphere, 9, 299–316. https://doi.org/10.1130/GES00796.1
    [Google Scholar]
  45. Jones, G. E. D., Hodgson, D. M., & Flint, S. S. (2015). Lateral variability in clinoform trajectory, process regime, and sediment dispersal patterns beyond the shelf‐edge rollover in exhumed basin margin‐scale clinothems. Basin Research, 27, 657–680.
    [Google Scholar]
  46. Kennett, J. P. (1982). Marine geology (813 pp). Englewood Cliffs, NJ: Prentice‐Hall.
  47. Kertznus, V., & Kneller, B. (2009). Clinoform quantification for assessing the effects of external forcing on continental margin development. Basin Research, 21, 738–758. https://doi.org/10.1111/j.1365-2117.2009.00411.x
    [Google Scholar]
  48. Li, C.‐F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y. J., … Zhang, G. (2014). Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry Geophysics Geosystems, 15, 4958–4983. https://doi.org/10.1002/2014GC005567
    [Google Scholar]
  49. Li, H., Wang, Y., Zhu, W., Xu, Q., He, Y., Tang, W., … Li, D. (2013). Seismic characteristics and processes of the Plio‐Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea. Marine and Petroleum Geology, 43, 370–380. https://doi.org/10.1016/j.marpetgeo.2012.12.010
    [Google Scholar]
  50. Li, Q., Wang, P. X., Zhao, Q., Shao, L., Zhong, G., Tian, J., … Su, X. (2006). A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea. Marine Geology, 230, 217–235.
    [Google Scholar]
  51. Li, W., Alves, T. M., Wu, S., Volker, D., Zhao, F., Mi, L., & Kopf, A. (2015). Recurrent slope failure and submarine channel incision as key factors controlling reservoir potential in the South China Sea (Qiongdongnan Basin, South Hainan Island). Marine and Petroleum Geology, 64, 17–460. https://doi.org/10.1016/j.marpetgeo.2015.02.043
    [Google Scholar]
  52. Li, Y., Zheng, R., Zhu, G., & Hu, X. (2012). Deep‐water tractive depositon in Zhujiang Formation Baiyun Sag, Zhujiang River Mouth Basin and its geological implications. Acta Oceanologica Sinica, 34, 127–135 (in Chinese with English abstract).
    [Google Scholar]
  53. Lin, C., Liu, J., Cai, X., Zhang, Y., Lu, M., & Li, J. (2001). Depositional architecture and developing settings of large‐scale incised valley and sub‐marine gravity flow systems in the Yinggehai and Qiong‐ dongnan basins, South China Sea. Chinese Science Bulletin, 46, 690–693. https://doi.org/10.1007/BF03182838
    [Google Scholar]
  54. Lin, C., Jiang, J., Shi, H., Zhang, Z., Liu, J., Qin, C., … Yao, Q. (2018). Sequence architecture and depositional evolution of the northern continental slope of the South China Sea: Responses to tectonic processes and changes in sea level. Basin Research, 30(Suppl. 1), 568–595. https://doi.org/10.1111/bre.12238
    [Google Scholar]
  55. Liquete, C., Canals, M., De Mol, B., De Batist, M., & Trincardi, F. (2008). Quaternary stratal architecture of the Barcelona prodeltaic continental shelf (NW Mediterranean). Marine Geology, 250, 234–250. https://doi.org/10.1016/j.margeo.2008.01.014
    [Google Scholar]
  56. Liu, B., Pang, X., Yan, C., Liu, J., Lian, S., He, M., & Shen, J. (2011). Evolution of the Oligocene‐Miocene shelf slope‐break zone in the Baiyun deep‐water area of the Pearl River Mouth Basin and its significance in oil‐gas exploration. Acta Petrolei Sinica, 32, 234–242 (in Chinese with English abstract).
    [Google Scholar]
  57. Liu, Z., Colin, C., Li, X., Zhao, Y., Tuo, S., Chen, Z., … Huang, K. F. (2010). Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Marine Geology, 277, 48–60. https://doi.org/10.1016/j.margeo.2010.08.010
    [Google Scholar]
  58. Luan, X., Peng, X., Wang, Y., & Qiu, Y. (2010). Activity and formation of sand waves on northern South China Sea Shelf. Journal of Earth Science, 84, 233–245. https://doi.org/10.1007/s12583-010-0005-4
    [Google Scholar]
  59. Luan, X., Zhang, L., & Peng, X. (2011). Dongsha erosive channel on northern South China Sea Shelf and its induced Kuroshio South China Sea Branch. Science China Earth Science, 41, 1636–1646.
    [Google Scholar]
  60. Lüdmann, T., Wong, H. K., & Wang, P. (2001). Plio‐Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea. Marine Geology, 172, 331–358. https://doi.org/10.1016/S0025-3227(00)00129-8
    [Google Scholar]
  61. Ma, B., Wu, S., Sun, Q., Mi, L., Wang, Z., & Tian, J. (2015). The late Cenozoic deep‐water channel system in the Baiyun Sag, Pearl River Mouth Basin: Development and tectonic effects. Deep‐Sea Research II, 122, 226–239. https://doi.org/10.1016/j.dsr2.2015.06.015
    [Google Scholar]
  62. Morley, C. K. (2016). Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development. Journal of Asian Earth Sciences, 120, 62–86. https://doi.org/10.1016/j.jseaes.2016.01.013
    [Google Scholar]
  63. Moscardelli, L., Wood, L. J., & Dunlap, D. B. (2012). Shelf‐edge deltas along structurally complex margins: A case study from eastern offshore Trinidad. AAPG Bulletin, 96, 1483–1522. https://doi.org/10.1306/01241211046
    [Google Scholar]
  64. Mougenot, D., Boillot, G., & Rehault, J. P. (1983). Prograding shelfbreak types on passive continental margins: Some European examples. In D. J.Stanley & G. T.Moore (Eds.), The shelfbreak: Critical interface on Continental Margins (pp. 61–78). Tulsa, OK: SEPM Special Publication.
    [Google Scholar]
  65. Neal, J. E., Abreu, V., Bohacs, K. M., Feldman, H. R., & Pederson, K. H. (2016). Accommodation succession (δA/δS) sequence stratigraphy: Observational method, utility and insights into sequence boundary formation. Journal of the Geological Society, 173, 803–816.
    [Google Scholar]
  66. O’Grady, D. B., Syvitski, J. P. M., Pratson, L. P., & Sarg, J. F. (2000). Categorizing the morphologic variability of siliciclastic passive continental margins. Geology, 28, 207–210. https://doi.org/10.1130/0091-7613(2000)28<207:CTMVOS>2.0.CO;2
    [Google Scholar]
  67. Olariu, C., & Steel, R. J. (2009). Influence of point‐source sediment‐supply on modern shelf‐slope morphology: Implications for interpretation of ancient shelf margins. Basin Research, 21, 484–501. https://doi.org/10.1111/j.1365-2117.2009.00420.x
    [Google Scholar]
  68. Pang, X., Shen, J., Yuan, L., Lian, S., He, M., & Shu, Y. (2006). Petroleum prospect in deep‐water fan system of the Pearl River in the South China Sea. Acta Petrolei Sinica, 27, 11–16 (in Chinese with English abstract).
    [Google Scholar]
  69. Pang, X., Chen, C., Shao, L., Wang, C., Zhu, M., He, M., … Wu, X. (2007). Baiyun Movement, a great tectonic event on the Oligocene‐Miocene boundary in the Northern South China Sea and its implications. Geological Review, 53, 145–151 (in Chinese with English abstract).
    [Google Scholar]
  70. Patruno, S., Hampson, G. J., & Jackson, C.‐A.‐L. (2015). Quantitative characterization of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119.
    [Google Scholar]
  71. Patruno, S., Hampson, G. J., Jackson, C.‐A.‐L., & Dreyer, T. (2015). Clinoform geometry, geomorphology, facies character and stratigraphic architecture of a sand‐rich subqeuous delta: Jurassic Sognefjord Formation, offshore Norway. Sedimentology, 62, 350–388.
    [Google Scholar]
  72. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233. https://doi.org/10.1016/j.earscirev.2018.05.016
    [Google Scholar]
  73. Pellegrini, C., Asioli, A., Bohacs, K. M., Drexler, T. M., Feldman, H. R., Sweet, M. L., … Trincardi, F. (2018). The late Pleistocene Po River lowstand wedge in the Adriatic Sea: Controls on architecture variability and sediment patitioning. Marine and Petroleum Geology, 96, 16–50.
    [Google Scholar]
  74. Peng, D., Pang, X., Chen, C., Shu, Y., Ye, B., Gan, G., … Huang, X. (2005). From shallow‐water shelf to deep‐water slope – the study on deep‐water fan systems in South China Sea. Acta Sedimentologica Sinica, 23, 431–11 (in Chinese with English abstract).
    [Google Scholar]
  75. Pirmez, C., Pratson, L. F., & Steckler, M. S. (1998). Clinoform development by advection–diffusion of suspended sediment: Modeling and comparison to natural systems. Journal of Geophysical Research: Solid Earth, 103, 24141–24157. https://doi.org/10.1029/98JB01516
    [Google Scholar]
  76. Plink‐Björklund, P., Mellere, D., & Steel, R. J. (2001). Turbidite variability and architecture of sand‐prone, deep‐water slopes: Eocene clinoforms in the Central Basin, Spitsbergen. Journal of Sedimentary Research, 71, 895–912. https://doi.org/10.1306/030501710895
    [Google Scholar]
  77. Plink‐Björklund, P., & Steel, R. (2002). Sea‐level fall below the shelf edge, without basin‐floor fans. Geology, 30, 115–118. https://doi.org/10.1130/0091-7613(2002)030<0115:SLFBTS>2.0.CO;2
    [Google Scholar]
  78. Plink‐Björklund, P., & Steel, R. (2005). Deltas on falling‐stage and lowstand shelf margins, the Eocene Central Basin of Spitsbergen: Importance of sediment supply. In L.Giosan & J. P.Bhattacharya (Eds.), River Deltas‐concepts, models, and examples (pp. 179–206). Tulsa, OK: SEPM Special Publication No. 83.
    [Google Scholar]
  79. Porębski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Science Reviews, 62, 283–326. https://doi.org/10.1016/S0012-8252(02)00161-7
    [Google Scholar]
  80. Pratson, L. F., & Haxby, W. F. (1996). What is the slope of the U.S. continental slope?Geology, 24, 3–6. https://doi.org/10.1130/0091-7613(1996)024<0003:WITSOT>2.3.CO;2
    [Google Scholar]
  81. Pratson, L. F., Nittrouer, C. A., & Wiberg, P. L. (2007). Seascape evolution on clastic continental shelves and slopes. In C. A.Nittrouer (Ed.), Continental margin sedimentation (pp. 340–380). Oxford: Blackwell Publishing.
    [Google Scholar]
  82. Pratson, L. F., Nittrouer, C. A., Wiberg, P. L., Steckler, M. S., Swenson, J. B., Cacchione, D. A., … Fedele, J. J. (2009). Seascape evolution on clastic continental shelves and slopes. In I.Jarvis, C. A.Nittrouer, J. A.Austin, M. E.Field, J. H.Kravitz, J. P.Syvitski, & P. L.Wiberg (Eds.), Continental Margin Sedimentation (pp. 339–380). Oxford, UK: Blackwell Publishing Ltd.
    [Google Scholar]
  83. Qin, G. (1996). Application of micropaleontology to the sequence stratigraphic studies of Late Cenozoic in the Zhujiang River Mouth Basin. Marine Geology and Quaternary Geology, 16, 431–18 (in Chinese with English abstract).
    [Google Scholar]
  84. Qiu, Y., Peng, X., Wang, Y., Huang, W., Du, W., Chen, H., … Gong, C. (2017). Erosive process and sedimentary characteristics of the Quaternary sediments in the northern South China Sea (192 pp.). Beijing, China: Geological Publishing House.
  85. Ramp, S. R., Tang, T. Y., Duda, T. F., Lynch, J. F., Liu, A. K., Chiu, C.‐S., … Yang, Y.‐J. (2004). Internal solitons in the Northeastern South China Sea Part I: Sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29, 1157–1181. https://doi.org/10.1109/JOE.2004.840839
    [Google Scholar]
  86. Reeder, D. B., Ma, B. B., & Yang, Y. J. (2011). Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep‐water internal solitary waves. Marine Geology, 279, 12–18. https://doi.org/10.1016/j.margeo.2010.10.009
    [Google Scholar]
  87. Ross, W. C., Halliwell, B. A., & May, J. A. (1994). Slope readjustment: A new model for the development of submarine fans and aprons. Geology, 22, 511–514. https://doi.org/10.1130/0091-7613(1994)022<0511:SRANMF>2.3.CO;2
    [Google Scholar]
  88. Ru, K., & Pigott, J. D. (1986). Episodic rifting and subsidence in the South China Sea. AAPG Bulletin, 70, 1136–1155.
    [Google Scholar]
  89. Ryan, M. C., Helland‐Hansen, W., Johannessen, E. P., & Steel, R. J. (2009). Erosional vs. accretionary shelf margins: The influence of margin type on deepwater sedimentation: An example from the Porcupine Basin, offshore western Ireland. Basin Research, 21, 676–703. https://doi.org/10.1111/j.1365-2117.2009.00424.x
    [Google Scholar]
  90. Salazar, M., Moscardelli, L., & Wood, L. J. (2015). Utilizing clinoform architecture to understand the drivers of basin margin evolution: A case study in the Taranaki Basin. New Zealand. Basin Research, 28, 431–26.
    [Google Scholar]
  91. Schlager, W., & Adams, E. W. (2001). Model for the sigmoidal curvature of submarine slopes. Geology, 29, 883–886. https://doi.org/10.1130/0091-7613(2001)029<0883:MFTSCO>2.0.CO;2
    [Google Scholar]
  92. Shanmugam, G. (2013). Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep‐marine baroclinic sands. AAPG Bulletin, 97, 799–843. https://doi.org/10.1306/10171212101
    [Google Scholar]
  93. Shao, L., Li, X., Wang, P., Jian, Z., Wei, G., Pang, X., & Liu, Y. (2004). Sedimentary record of the tectonic evolution of the South China Sea since the Oligocene – Evidence from deep sea sediments of ODP Site 1148. Advances in Earth Science, 19, 539–544 (in Chinese with English abstract).
    [Google Scholar]
  94. Shao, L., Li, X., Geng, J., Pang, X., Lei, Y., Qiao, P., … Wang, H. (2007). Deep water bottom current deposition in the northern South China Sea. Science in China Series D‐Earth Sciences, 50, 1060–1066. https://doi.org/10.1007/s11430-007-0015-y
    [Google Scholar]
  95. Shi, H., He, M., Zhang, L., Yu, Q., Pang, X., Zhong, Z., & Liu, L. (2014). Hydrocarbon geology, accumulation pattern and the next exploration strategy in the eastern Pearl River Mouth Basin. China Offshore Oil and Gas, 26, 11–22 (in Chinese with English abstract).
    [Google Scholar]
  96. Sibuet, J.‐C., Yeh, Y.‐C., & Lee, C.‐S. (2016). Geodynamics of the South China Sea. Tectonophysics, 692, 98–119. https://doi.org/10.1016/j.tecto.2016.02.022
    [Google Scholar]
  97. Steel, R. J., & Olsen, T. (2002). Clinoforms, clinoform trajectory and deepwater sands. In J. M.Armentrout &N. C.Rosen (Eds.), Sequence stratigraphic models for exploration and production: Evolving methodology, emerging models and application (pp. 367–381). Tulsa, OK: SEPM GCS‐SEPM Special Publication.
    [Google Scholar]
  98. Sun, Q., Cartwright, J., Wu, S., Zhong, G., Wang, S., & Zhang, H. (2016). Submarine erosional troughs in the northern South China Sea: Evidence for Early Miocene deepwater circulation and paleoceanographic change. Marine and Petroleum Geology, 77, 75–91. https://doi.org/10.1016/j.marpetgeo.2016.06.005
    [Google Scholar]
  99. Sun, Z., Zhong, Z., Keep, M., Zhou, D., Cai, D., Li, X., … Jiang, J. (2009). 3D analogue modeling of the South China Sea: A discussion on breakup pattern. Journal of Asian Earth Sciences, 34, 544–556. https://doi.org/10.1016/j.jseaes.2008.09.002
    [Google Scholar]
  100. Vanney, J. R., & Stanely, D. J. (1983). Shelfbreak physiography: an over view. In D. J.Stanley, & G. T.Moore (Eds.), The Shelfbreak: Critical Interface on Continental Margins (pp. 431–24). Tulsa, OK: SEPM Special Publication No. 33.
    [Google Scholar]
  101. Wang, H. R., Wang, Y., Qiu, Y., Peng, X., & Liu, Y. (2008). Geomorphology and its control of deep‐water slope of the margin of the South China Sea. Acta Oceanologica Sinica, 30, 70–78 (in Chinese with English abstract).
    [Google Scholar]
  102. Wang, P., Prell, W. L., & Blum, P. (2000). Proceedings of the Ocean Drilling Program, Initial Reports, 184. College Station, TX: Ocean Drilling Program.
  103. Wang, P., Wang, L., Bian, Y., & Jian, Z. (1995). Late Quaternary paleoceanography of the South China Sea: Surface circulation and carbonate cycles. Marine Geology, 127, 145–165. https://doi.org/10.1016/0025-3227(95)00008-M
    [Google Scholar]
  104. Wang, X., Wang, Y., He, M., Chen, W., Zhuo, H., Gao, S., … Zhou, J. (2017). Genesis and evolution of the mass transport deposits in the middle segment of the Pearl River canyon, South China Sea: Insights from 3D seismic data. Marine and Petroleum Geology, 88, 555–574. https://doi.org/10.1016/j.marpetgeo.2017.08.036
    [Google Scholar]
  105. Wang, Y. M., Xu, Q., Li, D., Han, J., Lv, M., Wang, Y., … Wang, H. (2011). Late Miocene Red River submarine fan, northwestern South China Sea. Chinese Science Bulletin, 56, 1488–1494. https://doi.org/10.1007/s11434-011-4441-z
    [Google Scholar]
  106. Winker, C. D., & Edwards, M. B. (1983). Unstable progradational clastic shelf margins. In D. J.Stanley, & G. T.Moore (Eds.), The Shelfbreak: Critical interface on Continental Margins (pp. 139–157). Tulsa, OK: SEPM Special Publication.
    [Google Scholar]
  107. Wyrtki, K. (1961). Physical oceanography of the Southeast Asian Waters: Scientific results of marine investigation of the South China Sea and the Gulf of Thailand (195 pp.). La Jolla, CA: Scripps Institution of Oceanography.
  108. Xie, X., Müller, R. D., Ren, J., Jiang, T., & Zhang, C. (2008). Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea. Marine Geology, 247, 129–144. https://doi.org/10.1016/j.margeo.2007.08.005
    [Google Scholar]
  109. Xu, Q., Wang, Y., Wang, D., & Li, D. (2010). Sedimentary responses of retreating shelf break from Oligocene to Miocene in deep water area of Baiyun Depression, South China Sea. Acta Sedimentologica Sinica, 28, 906–916 (in Chinese with English abstract).
    [Google Scholar]
  110. Yang, D., Ye, H., & Wang, G. (2010). Impacts of internal waves on chlorophyll a distribution in the northern portion of the South China Sea. Chinese Journal of Oceanology and Limnology, 28, 1095–1101. https://doi.org/10.1007/s00343-010-9971-8
    [Google Scholar]
  111. Yao, B. (1996). Tectonic evolution of the South China Sea in Cenozoic. Marine Geology & Quaternary Geology, 16, 431–13 (in Chinese with English abstract).
    [Google Scholar]
  112. Zhao, F., Alves, T. M., Wu, S., Li, W., Huuse, M., Mi, L., … Ma, B. (2016). Prolonged post‐rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea). Earth and Planetary Science Letters, 445, 79–91. https://doi.org/10.1016/j.epsl.2016.04.001
    [Google Scholar]
  113. Zhao, Z., Sun, Z., Sun, L., Wang, Z., & Sun, Z. P. (2018). Cenozoic tectonic subsidence in the Qiongdongnan Basin, northern South China Sea. Basin Research, 30(Suppl. 1), 269–288. https://doi.org/10.1111/bre.12220
    [Google Scholar]
  114. Zhou, D., Ru, K., & Chen, H. Z. (1995). Kinematics of cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics, 251, 161–177. https://doi.org/10.1016/0040-1951(95)00018-6
    [Google Scholar]
  115. Zhou, W., Wang, Y., Gao, X., Zhu, W., Xu, Q., Xu, S., … Wu, J. (2015). Architecture, evolution history and controlling factors of the Baiyun submarine canyon system from the middle Miocene to Quaternary in the Pearl River Mouth Basin, northern South China Sea. Marine and Petroleum Geology, 67, 389–407. https://doi.org/10.1016/j.marpetgeo.2015.05.015
    [Google Scholar]
  116. Zhu, M., Graham, S., & McHargue, T. (2011). Characterization of mass‐transport deposits on a Pliocene siliciclastic continental slope, northwestern South China Sea. In R. C.Shipp, P.Weimer, & H. W.Posamentier (Eds.), Mass‐transport deposits in deepwater settings (pp. 111–125). Tulsa, OK: SEPM Special Publication No. 96.
    [Google Scholar]
  117. Zhu, M., Graham, S., Pang, X., & McHargue, T. (2010). Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea. Marine and Petroleum Geology, 27, 307–319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
    [Google Scholar]
  118. Zhuo, H., Wang, Y., Shi, H., Zhu, M., He, M., Chen, W., & Li, H. (2014). Seismic geomorphology, architecture and genesis of Miocene shelf sand ridges in the Pearl River Mouth Basin, northern South China Sea. Marine and Petroleum Geology, 54, 106–122.
    [Google Scholar]
  119. Zhuo, H., Wang, Y., Shi, H., He, M., Chen, W., Li, H., … Yan, W. (2015). Contrasting fluvial styles across the mid‐Pleistocene climate transition in the northern shelf of the South China Sea: Evidence from 3D seismic data. Quaternary Science Reviews, 129, 128–146. https://doi.org/10.1016/j.quascirev.2015.10.012
    [Google Scholar]
  120. Zhuo, H., Wang, Y., Xu, Q., Li, D., Wang, Y., Wang, Y., … Tang, W. (2014). Classification and genesis of continental slopes on the northern South China Sea. Acta Geologica Sinica, 88, 327–336 (in Chinese with English abstract).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12329
Loading
/content/journals/10.1111/bre.12329
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): morphology; sediment supply; shelf margin; South China Sea; stratigraphy

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error