1887
Volume 31, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

Conceptual model of TMF evolution during a full glacial/interglacial cycle. (a) Interglacial stage with hemipelagic sedimentation. During winter, dense shelf water flows due to sea ice formation and brine release maintain free of sediment some of the upper and middle slope gullies excavated during the deglaciation. (b) GM, the material transported by ice streams is dumped over the shelf edge as debris flows which can erode the underlying sediments. (c) Deglaciation: the turbid meltwater plumes leave a bed of plumite/turbidite sediments covering the shelf and TMF area, while the most energetic flows excavate gullies on the upper slope. The thickness of this unit increases towards the south. d: Submarine landslides triggered by earthquakes from isostatic rebound induced by ice sheet retreat. (1) hyperpycnal flow; (2) hemipelagic (interglacial) sediments; (3) gullies; (4) contour currents, (5) subglacial (diamicton) till; (6) debris flows; (7) meltwater plumes; (8) gully erosion and plumite/turbidite sedimentation; (9) iceberg rafting; (10) earthquake; (11) landslides; (12) glacial trough. In (b) to (d), sea‐ice is not shown for a better visualisation of the slope processes. Overpressure shading and fluid flow vectors are depicted.

, Abstract

Using a combination of geophysical and geotechnical data from Storfjorden Trough Mouth Fan off southern Svalbard, we investigate the hydrogeology of the continental margin and how this is affected by Quaternary glacial advances and retreats over the continental shelf. The geotechnical results show that plumites, deposited during the deglaciation, have high porosities, permeabilities and compressibilities with respect to glacigenic debris flows and tills. These results together with margin stratigraphic models obtained from seismic reflection data were used as input for numerical finite element models to understand focusing of interstitial fluids on glaciated continental margins. The modelled evolution of the Storfjorden TMF shows that tills formed on the shelf following the onset of glacial sedimentation (ca. 1.5 Ma) acted as aquitards and therefore played a significant role in decreasing the vertical fluid flow towards the sea floor and diverting it towards the slope. The model shows that high overpressure ratios (up to λ ca. 0.6) developed below the shelf edge and on the middle slope. A more detailed model for the last 220 kyrs accounting for ice loading during glacial maxima shows that the formation of these aquitards on the shelf focused fluid flow towards the most permeable plumite sediments on the slope. The less permeable glacigenic debris flows that were deposited during glacial maxima on the slope hinder fluid evacuation from plumites allowing high overpressure ratios (up to λ ca. 0.7) to develop in the shallowest plumite layers. These high overpressures likely persist to the Present and are a critical precondition for submarine slope failure.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12331
2019-02-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/31/3/bre12331.html?itemId=/content/journals/10.1111/bre.12331&mimeType=html&fmt=ahah

References

  1. Baeten, N. J., Laberg, J. S., Vanneste, M., Forsberg, C. F., Kvalstad, T. J., Forwick, M., … Haflidason, H. (2014). Origin of shallow submarine mass movements and their glide planes‐Sedimentological and geotechnical analyses from the continental slope off northern Norway. Journal of Geophysical Research: Earth Surface, 119(11), 2335–2360. https://doi.org/10.1002/2013JF003068
    [Google Scholar]
  2. Bellwald, B., Hjelstuen, B. O., Sejrup, H. P., & Haflidason, H. (2016). ‘Postglacial mass movements and depositional environments in a high‐latitude fjord system – Hardangerfjorden, Western Norway. Marine Geology, 379, 157–175. https://doi.org/10.1016/j.margeo.2016.06.002
    [Google Scholar]
  3. Bitzer, K. (1996). Modeling consolidation sedimentary and fluid basins flow. Computers & Geosciences, 22(5), 467–478. https://doi.org/10.1016/0098-3004(95)00113-1
    [Google Scholar]
  4. Bitzer, K. (1999). Two‐dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins. Computers & Geosciences, 25(4), 431–447. https://doi.org/10.1016/S0098-3004(98)00147-2
    [Google Scholar]
  5. Boudreau, B. P. (1996). The diffusive tortuosity of fine‐grained unlithified sediments. Geochimica et Cosmochimica Acta, 60(16), 3139–3142. https://doi.org/10.1016/0016-7037(96)00158-5
    [Google Scholar]
  6. British Standards Institution
    British Standards Institution (1990) Part 6. Consolidation and permeability test in hydraulic cells and with pore pressure measurement. In: Soils for civil engineering purposes. Road Enineering Satndards Committee, p. 61.
  7. Bryn, P., Berg, K., Stoker, M., Haflidason, H., & Solheim, A. (2005). Contourites and their relevance for mass wasting along the Mid‐Norwegian Margin. Marine and Petroleum Geology, 22(1–2), 85–96. https://doi.org/10.1016/j.marpetgeo.2004.10.012
    [Google Scholar]
  8. Bungum, H., Lindholm, C., & Faleide, J. I. (2005). Postglacial seismicity offshore mid‐Norway with emphasis on spatio‐temporal‐magnitudal variations. Marine and Petroleum Geology, 22(1–2), 137–148. https://doi.org/10.1016/j.marpetgeo.2004.10.007
    [Google Scholar]
  9. Butt, F. A., Elverhøi, A., Solheim, A., & Forsberg, C. F. (2000). Deciphering late cenozoic development of the western Svalbard Margin from ODP Site 986 results. Marine Geology, 169(3–4), 373–390. https://doi.org/10.1016/S0025-3227(00)00088-8
    [Google Scholar]
  10. Christoffersen, P., & Tulaczyk, S. (2003). Signature of palaeo‐ice‐stream stagnation: Till consolidation induced by basal freeze‐on. Boreas, 32(1), 114–129. https://doi.org/10.1111/j.1502-3885.2003.tb01433.x
    [Google Scholar]
  11. Dahlgren, K. I., Vorren, T. O., Stoker, M. S., Nielsen, T., Nygård, A., & Petter Sejrup, H. (2005). Late Cenozoic prograding wedges on the NW European continental margin: Their formation and relationship to tectonics and climate. Marine and Petroleum Geology, 22(9–10), 1089–1110. https://doi.org/10.1016/j.marpetgeo.2004.12.008
    [Google Scholar]
  12. Dowdeswell, J. A., Elverhøi, A., & Spielhagen, R. (1998). Glacimarine sedimentary processes and facies on the Polar North Atlantic margins. Quaternary Science Reviews, 17(1–3), 243–272. https://doi.org/10.1016/S0277-3791(97)00071-1
    [Google Scholar]
  13. Dowdeswell, J. A., & Siegert, M. J. (1999). Ice‐sheet numerical modeling and marine geophysical measurements of glacier‐derived sedimentation on the Eurasian Arctic continental margins. Geological Society of America Bulletin, 111(7), 1080–1097. https://doi.org/10.1130/0016-7606(1999)111<1080:ISNMAM>2.3.CO;2
    [Google Scholar]
  14. Dugan, B., & Sheahan, T. C. (2012). Offshore sediment overpressures of passive margins: Mechanisms, measurement, and models. Reviews of Geophysics, 50(3), 487–20. https://doi.org/10.1029/2011RG000379
    [Google Scholar]
  15. Eldholm, O., Sundvor, E., Myhre, A. M., & Faleide, J. I. (1984) Cenozoic evolution of the continental margin off Norway and western Svalbard. In A. M.Spencer (Ed.), Petroleum Geology of the North European Margin (pp. 3–18). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978-94-009-5626-1
    [Google Scholar]
  16. Engelhardt, H., & Kamb, B. (1997). Basal hydraulic system of a West Antarctic ice stream: Constraints from borehole observations. Journal of Glaciology, 43(144), 207–230. https://doi.org/10.3189/S0022143000003166
    [Google Scholar]
  17. Faleide, J. I., Solheim, A., Fiedler, A., Hjelstuen, B. O., Andersen, E. S., & Vanneste, K. (1996). Late Cenozoic evolution of the western Barents Sea‐Svalbard continental margin. Global and Planetary Change, 12(1–4), 53–74. https://doi.org/10.1016/0921-8181(95)00012-7
    [Google Scholar]
  18. Faleide, J. I., Vdgnes, E., & Gudlaugsson, S. T. (1993). Late Mesozoic‐Cenozoic evolution of the south‐western Barents Sea in a regional rift‐shear tectonic setting. Marine and Petroleum Geology, 10, 186–214. https://doi.org/10.1016/0264-8172(93)90104-Z
    [Google Scholar]
  19. Fiedler, A., & Faleide, J. I. (1996). Cenozoic sedimentation along the southwestern Barents Sea margin in relation to uplift and erosion of the shelf. Global and Planetary Change, 12(1–4), 75–93. https://doi.org/10.1016/0921-8181(95)00013-5
    [Google Scholar]
  20. Flemings, P., Long, H., Dugan, B., Germaine, J., John, C., Behrmann, J., & Sawyer, D. (2008). Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth and Planetary Science Letters, 269(3–4), 309–325. https://doi.org/10.1016/j.epsl.2007.12.005
    [Google Scholar]
  21. Forsberg, C. F., Solheim, A., Jansen, E., & Andersen, E. S. (1999). The depositional enviroment of the western svalbard margin during the late pliocene and the pleistocene: Sedimentary facies changes at site 986. Proceedings of the Ocean Drilling Program, Scientific Results, 162, 233–246. https://doi.org/10.2973/odp.proc.sr.162.1999
    [Google Scholar]
  22. Gutierrez, M., & Wangen, M. (2005). Modeling of compaction and overpressuring in sedimentary basins. Marine and Petroleum Geology, 22(3), 351–363. https://doi.org/10.1016/j.marpetgeo.2005.01.003
    [Google Scholar]
  23. Haflidason, H., Lien, R., Sejrup, H. P., Forsberg, C. F., & Bryn, P. (2005). The dating and morphometry of the Storegga Slide. Marine and Petroleum Geology, 22(1–2), 123–136. https://doi.org/10.1016/j.marpetgeo.2004.10.008
    [Google Scholar]
  24. Hampel, A., Hetzel, R., Maniatis, G., & Karow, T. (2009). Three‐dimensional numerical modeling of slip rate variations on normal and thrust fault arrays during ice cap growth and melting. Journal of Geophysical Research, 114(B8), B08406. https://doi.org/10.1029/2008JB006113
    [Google Scholar]
  25. Hesse, R., Khodabakhsh, S., Klaucke, I., & Ryan, W. B. F. (1997). Asymmetrical turbid surface‐plume deposition near ice‐outlets of the Pleistocene Laurentide ice sheet in the Labrador Sea. Geo‐Marine Letters, 17(3), 179–187. https://doi.org/10.1007/s003670050024
    [Google Scholar]
  26. Hjelstuen, B. O., Elverhøi, A., & Faleide, J. I. (1996). Cenozoic erosion and sediment yield in the drainage area of the Storfjorden Fan. Global and Planetary Change, 12(1–4), 95–117. https://doi.org/10.1016/0921-8181(95)00014-3
    [Google Scholar]
  27. Hurtado, J. E., & Barbat, A. H. (1998). Monte carlo techniques in computational stochastic mechanics. Archives of Computational Methods in Engineering, 5(1), 3–29. https://doi.org/10.1007/BF02736747
    [Google Scholar]
  28. Jansen, E., Raymo, M. E., Blum, P., & Al, E. (1996). Site 986, Proceedings of the Ocean Drilling Program, 162 Initial Reports. College Station, TX: Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.162.109.1996
    [Google Scholar]
  29. Javanshir, R. J., Riley, G. W., Duppenbecker, S. J., & Abdullayev, N. (2015). ‘Validation of lateral fluid flow in an overpressured sand‐shale sequence during development of Azeri‐Chirag‐Gunashli oil field and Shah Deniz gas field: South Caspian Basin, Azerbaijan. Marine and Petroleum Geology, 59, 593–610. https://doi.org/10.1016/j.marpetgeo.2014.07.019
    [Google Scholar]
  30. Knies, J., Matthiessen, J., Vogt, C., Laberg, J. S., Hjelstuen, B. O., Smelror, M., … Vorren, T. O. (2009). The Plio‐Pleistocene glaciation of the Barents Sea‐Svalbard region: A new model based on revised chronostratigraphy. Quaternary Science Reviews, 28(9–10), 812–829. https://doi.org/10.1016/j.quascirev.2008.12.002
    [Google Scholar]
  31. Kvalstad, T. J., Andresen, L., Forsberg, C. F., Berg, K., Bryn, P., & Wangen, M. (2005). The Storegga slide: Evaluation of triggering sources and slide mechanics. Marine and Petroleum Geology, 22(1–2), 245–256. https://doi.org/10.1016/j.marpetgeo.2004.10.019
    [Google Scholar]
  32. Kyrke‐Smith, T. M., Katz, R. F., & Fowler, A. C. (2013). Subglacial hydrology and the formation of ice streams. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2161), 20130494. https://doi.org/10.1098/rspa.2013.0494
    [Google Scholar]
  33. Laberg, J. S., Andreassen, K., Knies, J., Vorren, T. O., & Winsborrow, M. (2010). Late pliocene‐pleistocene development of the barents sea ice sheet. Geology, 38(2), 107–110. https://doi.org/10.1130/G30193.1
    [Google Scholar]
  34. Laberg, J. S., Forwick, M., & Husum, K. (1996). Proceedings of the Ocean Drilling Program, 162 Initial Reports. In E.Jansen et al. (Ed.), Ocean Drilling Program (Proceedings of the Ocean Drilling Program), 162(ii), p. 2973. https://doi.org/10.2973/odp.proc.ir.162.1996
    [Google Scholar]
  35. Laberg, J. S., & Vorren, T. O. (1996). The glacier‐fed fan at the mouth of Storfjorden trough, western Barents Sea: A comparative study. Geologische Rundschau, 31, 338–349. https://doi.org/10.1007/bf02422239
    [Google Scholar]
  36. Laberg, J. S., & Vorren, T. O. (2000). The Trænadjupet Slide, offshore Norway ‐ Morphology, evacuation and triggering mechanisms. Marine Geology, 171(1–4), 95–114. https://doi.org/10.1016/S0025-3227(00)00112-2
    [Google Scholar]
  37. Landvik, J. Y., Bondevik, S., Elverhøi, A., Fjeldskaar, W., Mangerud, J., Salvigsen, O., … Vorren, T. O. (1998). Last glacial maximum of svalbard and the barents sea area: Ice sheet extent and configuration. Quaternary Science Reviews, 17(1–3), 43–75. https://doi.org/10.1016/S0277-3791(97)00066-8
    [Google Scholar]
  38. Leynaud, D., Sultan, N., & Mienert, J. (2007). The role of sedimentation rate and permeability in the slope stability of the formerly glaciated Norwegian continental margin: The Storegga slide model. Landslides, 4(4), 297–309. https://doi.org/10.1007/s10346-007-0086-z
    [Google Scholar]
  39. L'Heureux, J. S., Vanneste, M., Rise, L., Brendryen, J., Forsberg, C. F., Nadim, F., … Haflidason, H. (2013). ‘Stability, mobility and failure mechanism for landslides at the upper continental slope off Vesterålen, Norway. Marine Geology, 346, 192–207. https://doi.org/10.1016/j.margeo.2013.09.009
    [Google Scholar]
  40. Llopart, J., Urgeles, R., Camerlenghi, A., Lucchi, R. G., De Mol, B., Rebesco, M., & Pedrosa, M. T. (2014) Slope Instability of Glaciated Continental Margins: Constraints from Permeability‐Compressibility Tests and Hydrogeological Modeling Off Storfjorden, NW Barents Sea. In S.Krastel et al. (Ed.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research 37 (pp. 95–104). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-00972-8_9
    [Google Scholar]
  41. Llopart, J., Urgeles, R., Camerlenghi, A., Lucchi, R. G., Rebesco, M., & De Mol, B. (2015). Late Quaternary development of the Storfjorden and Kveithola Trough Mouth Fans, northwestern Barents Sea. Quaternary Science Reviews, 129, 68–84. https://doi.org/10.1016/j.quascirev.2015.10.002
    [Google Scholar]
  42. Lucchi, R. G., Camerlenghi, A., Colmenero‐hidalgo, E., Sierro, F. J., Bárcena, A., Flores, J., … Sagnotti, L. (2010) Sedimentary processes on the Storfjorden trough‐mouth fan during last deglaciation phase : The role of subglacial meltwater plumes on continental margin sedimentation. In Geophycal Research Abstracts. Oral Presentation, EGU General Assembly, 2010, May 3–7 2010, Vienna (Austria). Geophysical Research Abstracts, Vol. 12, EGU2010‐5753‐2., p. 487.
    [Google Scholar]
  43. Lucchi, R. G., Camerlenghi, A., Rebesco, M., Colmenero‐Hidalgo, E., Sierro, F. J., Sagnotti, L., … Caburlotto, A. (2013). Postglacial sedimentary processes on the Storfjorden and Kveithola trough mouth fans: Significance of extreme glacimarine sedimentation. Global and Planetary Change, 111, 309–326. Elsevier B.V. https://doi.org/10.1016/j.gloplacha.2013.10.008
    [Google Scholar]
  44. Lucchi, R. G., Pedrosa, M. T., Camerlenghi, A., Urgeles, R., De Mol, B., & Rebesco, M. (2012) Recent Submarine Landslides on the Continental Slope of Storfjorden and Kveithola Trough‐Mouth Fans (North West Barents Sea). In Y.Yamada, et al. (Eds.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research 31 (pp. 735–745). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978-94-007-2162-3
    [Google Scholar]
  45. Marín‐Moreno, H., Minshull, T. A., & Edwards, R. A. (2013). A disequilibrium compaction model constrained by seismic data and application to overpressure generation in The Eastern Black Sea Basin. Basin Research, 25, 331–347. https://doi.org/10.1111/bre.12001
    [Google Scholar]
  46. Mulder, T., & Moran, K. (1995). Relationship among submarine instabilities, sea level variations, and the presence of an ice sheet on the continental shelf: An example from the Verrill Canyon Area, Scotia Shelf. Paleoceanography, 10(1), 137–154. https://doi.org/10.1029/94PA02352
    [Google Scholar]
  47. Nadim, F. (2015). Accounting for Uncertainty and Variability in Geotechnical Characterization of Offshore Sites. In T.Schweckendiek et al. (Eds.), Geotechnical Safety and Risk V, Amsterdam, Netherlands: IOS Press.
    [Google Scholar]
  48. Nilsson, B., Højberg, A. L., Refsgaard, J. C., & Troldborg, L. (2007). Uncertainty in geological and hydrogeological data. Hydrology and Earth System Sciences, 11(5), 1551–1561. https://doi.org/10.5194/hess-11-1551-2007
    [Google Scholar]
  49. Ó Cofaigh, C., Andrews, J. T., Jennings, A. E., Dowdeswell, J. A., Hogan, K. A., Kilfeather, A. A., & Sheldon, C. (2013). Glacimarine lithofacies, provenance and depositional processes on a West Greenland trough‐mouth fan. Journal of Quaternary Science, 28(1), 13–26. https://doi.org/10.1002/jqs.2569
    [Google Scholar]
  50. Ó Cofaigh, C., Taylor, J., Dowdeswell, J. A., & Pudsey, C. J. (2003). Palaeo‐ice streams, trough mouth fans and high‐latitude continental slope sedimentation. Boreas, 32, 37–55. https://doi.org/10.1080/03009480310001858
    [Google Scholar]
  51. Ó Cofaigh, C., Taylor, J., Dowdeswell, J. A., Rosell‐Melé, A., Kenyon, N. H., Evans, J., & Mienert, J. (2002). Sediment reworking on high‐latitude continental margins and its implications for palaeoceanographic studies: insights from the Norwegian‐Greenland Sea. Geological Society, London, Special Publications, 203(1), 325–348. https://doi.org/10.1144/gsl.sp.2002.203.01.17
    [Google Scholar]
  52. Pedrosa, M. T., Camerlenghi, A., De Mol, B., Urgeles, R., Rebesco, M., & Lucchi, R. G. (2011). Seabed morphology and shallow sedimentary structure of the Storfjorden and Kveithola trough‐mouth fans (North West Barents Sea). Marine Geology, 286(1–4), 65–81. https://doi.org/10.1016/j.margeo.2011.05.009
    [Google Scholar]
  53. PLAXIS bv
    PLAXIS bv (2015) Plaxis 2015 User's Manual. Delf, The Netherlands: PLAXIS bv.
    [Google Scholar]
  54. Raymo, M. E.
    , E.Jansen, P.Blum, & T. D.Herbert (Eds.) (1999). Proceedings of the Ocean Drilling Program, 162 Scientific Results (Vol. 162). College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  55. Raymo, M. E., Jansen, E., Blum, P., & Herbert, T. D. (Eds.), (2002). Proceedings of the Ocean Drilling Program, Scientific Results. In Data report: Radiolarians in sediments from the Palmer Deep, Antarctica, Leg 178, Site 1098 (Vol. 178, Proceeding, pp. 487–14). College Station, TX: Texas A&M University (TAMU).
    [Google Scholar]
  56. Rebesco, M., Camerlenghi, A., & Llopart, J. (2015). Glacigenic debris flow deposits, Storfjorden Fan. In J. A.Dowdeswell, et al. (Eds.), Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. London: Geological Society, London, Special Publications, p. accepted.
    [Google Scholar]
  57. Rebesco, M., Laberg, J. S., Pedrosa, M. T., Camerlenghi, A., Lucchi, R. G., Zgur, F., & Wardell, N. (2014). Onset and growth of Trough‐Mouth Fans on the North‐Western Barents Sea margin – implications for the evolution of the Barents Sea/Svalbard Ice Sheet. Quaternary Science Reviews, 92, 227–234. Elsevier Ltd. https://doi.org/10.1016/j.quascirev.2013.08.015
    [Google Scholar]
  58. Rebesco, M., Liu, Y., Camerlenghi, A., Winsborrow, M., Laberg, J. S., Caburlotto, A., … Tomini, I. (2011). Deglaciation of the western margin of the Barents Sea Ice Sheet — A swath bathymetric and sub‐bottom seismic study from the Kveithola Trough. Marine Geology, 279(1–4), 141–147. https://doi.org/10.1016/j.margeo.2010.10.018
    [Google Scholar]
  59. Rebesco, M., Pedrosa, M. T., Camerlenghi, A., G, R., Sauli, C., Mol, B. De., … Böhm, G. (2012) One million years of climatic generated landslide events on the northwestern Barents Sea continental margin. In Y.Yamada et al. (eds) Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research 31 (pp. 747–756). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978-94-007-2162-3_66
    [Google Scholar]
  60. Rebesco, M., Wåhlin, A., Laberg, J. S., Schauer, U., Beszczynska‐Möller, A., Lucchi, R. G., … Diviacco, P. (2013). ‘Quaternary contourite drifts of the Western Spitsbergen margin. Deep Sea Research Part I: Oceanographic Research Papers, 79, 156–168. Elsevier. https://doi.org/10.1016/j.dsr.2013.05.013
    [Google Scholar]
  61. Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P., Tamisiea, M. E., & Williams, F. (2014). Sea‐level and deep‐sea‐temperature variability over the past 5.3 million years. Nature, 508(7497), 477–482. https://doi.org/10.1038/nature13230
    [Google Scholar]
  62. Sættem, J., Bugge, T., Fanavoll, S., Goll, R. M., Mork, A., Mork, M. B. E., … Verdenius, J. G. (1994). Marine Cenozoic margin development and erosion of the Barents Sea: Core evidence from southwest of Bjornoya. Marine Geology, 118, 257–281. https://doi.org/10.1016/0025-3227(94)90087-6
    [Google Scholar]
  63. Sejrup, H. P., Hjelstuen, B. O., Dahlgren, K. I. T., Haflidason, H., Kuijpers, A., Nygård, A., … Vorren, T. O. (2005). Pleistocene glacial history of the NW European continental margin. Marine and Petroleum Geology, 22(9–10), 1111–1129. https://doi.org/10.1016/j.marpetgeo.2004.09.007
    [Google Scholar]
  64. Solheim, A., Andersen, E. S., Elverhøi, A., & Fiedler, A. (1996). Late Cenozoic depositional history of the western Svalbard continental shelf, controlled by subsidence and climate. Global and Planetary Change, 12, 135–148. https://doi.org/10.1016/0921-8181(95)00016-X
    [Google Scholar]
  65. Stein, R. (2008). Glacio‐marine sedimentary processes. Marine Geology, 2, 87–132.
    [Google Scholar]
  66. Stigall, J., & Dugan, B. (2010). Overpressure and earthquake initiated slope failure in the Ursa region, northern Gulf of Mexico. Journal of Geophysical Research, 115, 487–11. https://doi.org/10.1029/2009JB006848
    [Google Scholar]
  67. Sultan, N., Cochonat, P., Foucher, J. P., & Mienert, J. (2004). Effect of gas hydrates melting on seafloor slope instability. Marine Geology, 213(1–4), 379–401. https://doi.org/10.1016/j.margeo.2004.10.015
    [Google Scholar]
  68. Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Funder, S., … Stein, R. (2004). Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews, 23(11–13), 1229–1271. https://doi.org/10.1016/j.quascirev.2003.12.008
    [Google Scholar]
  69. Talwani, M., & Eldholm, O. (1977). Evolution of the Norwegian‐Greenland sea. Geological Society of America Bulletin, 88(7), 969–999. https://doi.org/10.1130/0016-7606(1977)88<969
    [Google Scholar]
  70. Taylor, J., Dowdeswell, J. A., Kenyon, N. H., & Cofaigh, O. C. (2002). Late Quaternary architecture of trough‐mouth fans: Debris flows and suspended sediments on the Norwegian margin. In J. A.Dowdeswell & Ó. C.Cofaigh (eds) Geological Society, London, Special Publications (pp. 55–71). London: Geological Society, London, Special Publications. https://doi.org/10.1144/gsl.sp.2002.203.01.04
    [Google Scholar]
  71. Tulaczyk, S., Kamb, W. B., & Engelhardt, H. F. (2000). Basal mechanics of Ice Stream B, west Antarctica: 1. Till mechanics. Journal of Geophysical Research, 105, 463. https://doi.org/10.1029/1999jb900329
    [Google Scholar]
  72. Urgeles, R., Locat, J., Sawyer, D. E., Flemings, P. B., Dugan, B., & Binh, N. T. T. (2010). History of Pore Pressure Build Up and Slope Instability in Mud‐Dominated Sediments of Ursa Basin, Gulf of Mexico Continental Slope. In D. C.Mosher et al. (Ed.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research, 28 (pp. 179–190). Dordrecht, the Netherlands: Spinger.
    [Google Scholar]
  73. Urlaub, M. (2013) The role of sedimentation rate on the stability of low gradient submarine continental slopes, Social Sciences. Southampton: University of Southampton.
    [Google Scholar]
  74. Urlaub, M., Talling, P. J., & Masson, D. G. (2013). Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard. Quaternary Science Reviews, 72, 63–82. https://doi.org/10.1016/j.quascirev.2013.04.020
    [Google Scholar]
  75. Van Hinte, J. E. (1978). Geohistory analysis: Application of micropaleontology in exploration geology. AAPG Bulletin. American Association of Petroleum Geologists (AAPG), 62(2), 201–222.
    [Google Scholar]
  76. Vanneste, M., Heureux, J. L., Baeten, N., Brendryen, J., Vardy, M. E., Steiner, A., … Reichel, T. (2012). Shallow landslides and their dynamics in coastal and deepwater environments, Norway. In Y.Yamada et al. (Eds.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research 31 (pp. 29–41). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978-94-007-2162-3
    [Google Scholar]
  77. Vorren, T. O., & Laberg, J. S. (1997). Trough Mouth Fans ‐ Paleoclimate and ice‐sheet monitors. Quaternary Science Reviews, 16(97), 865–881. https://doi.org/10.1016/S0277-3791(97)00003-6
    [Google Scholar]
  78. Vorren, T. O., Lebesbye, E., & Larsen, K. B. (1990). Geometry and genesis of the glacigenic sediments in the southern Barents Sea. In J. A.Dowdeswell & J. D.Scourse (Eds.), Glacimarine environments: Processes and sediments. Special pu. London: Geological Society, pp. 269–288. https://doi.org/10.1144/gsl.sp.1990.053.01.15
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12331
Loading
/content/journals/10.1111/bre.12331
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error