1887
Volume 31, Issue 3
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

Knowledge of the permeability structure of fault‐bearing reservoir rocks is fundamental for developing robust hydrocarbon exploration and fluid monitoring strategies. Studies often describe the permeability structure of low porosity host rocks that have experienced simple tectonic histories, while investigations of the influence of faults with multiple‐slip histories on the permeability structure of porous clastic rocks are limited. We present results from an integrated petrophysical, microstructural, and mineralogical investigation of the Eumeralla Formation (a tight volcanogenic sandstone) within the hanging wall of the Castle Cove Fault which strikes 30 km NE–SW in the Otway Basin, southeast Australia. This late Jurassic to Cenozoic‐age basin has experienced multiple phases of extension and compression. Core plugs and thin sections oriented relative to the fault plane were sampled from the hanging wall at distances of up to 225 m from the Castle Cove Fault plane. As the fault plane is approached, connected porosities increase by ca. 10% (17% at 225 m to 24% at 0.5 m) and permeabilities increase by two orders of magnitude (from 0.04 mD at 225 m to 1.26 mD at 0.5 m). Backscattered Scanning Electron Microscope analysis shows that microstructural changes due to faulting have enhanced the micrometre‐scale permeability structure of the Eumeralla Formation. These microstructural changes have been attributed to the formation of microfractures and destruction of original pore‐lining chlorite morphology as a result of fault deformation. Complex deformation, that is, formation of macrofractures, variably oriented microfractures, and a hanging wall anticline, associated with normal faulting and subsequent reverse faulting, has significantly influenced the off‐fault fluid flow properties of the protolith. However, despite enhancement of the host rock permeability structure, the Eumeralla Formation at Castle Cove is still considered a tight sandstone. Our study shows that high‐resolution integrated analyses of the host rock are critical for describing the micrometre‐scale permeability structure of reservoir rocks with high porosities, low permeabilities, and abundant clays that have experienced complex deformation.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12345
2019-03-13
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/bre/31/3/bre12345.html?itemId=/content/journals/10.1111/bre.12345&mimeType=html&fmt=ahah

References

  1. Anders, M. H., Laubach, S. E., & Scholz, C. H. (2014). Microfractures: A Review. Journal of Structural Geology 69(Part, B), 377–394. https://doi.org/10.1016/j.jsg.2014.05.011
    [Google Scholar]
  2. Anderson, E. M. (1951). The dynamics of faulting and dyke formation with applications to Britain, 2nd ed. Edinburgh, UK: Oliver and Boyd.
    [Google Scholar]
  3. Antonellini, M., & Aydin, A. (1994). Effect of faulting on fluid flow in porous sandstones: Petrophysical properties. AAPG Bulletin, 78, 355–377.
    [Google Scholar]
  4. Aydin, A. (2000). Fractures, faults, and hydrocarbon entrapment, migration and flow. Marine and Petroleum Geology, 17, 797–814. https://doi.org/10.1016/S0264-8172(00)00020-9
    [Google Scholar]
  5. Baccar, M. B., Fritz, B., & Made, B. (1993). Diagenetic albitization of K‐feldspar and plagioclase in sandstone reservoirs; thermodynamic and kinetic modeling. Journal of Sedimentary Research, 63, 1100–1109. https://doi.org/10.1306/D4267CB2-2B26-11D7-8648000102C1865D
    [Google Scholar]
  6. Balsamo, F., Storti, F., Salvini, F., Silva, A. T., & Lima, C. C. (2010). Structural and petrophysical evolution of extensional fault zones in low‐porosity, poorly lithified sandstones of the Barreiras Formation, NE Brazil. Journal of Structural Geology, 32, 1806–1826. https://doi.org/10.1016/j.jsg.2009.10.010
    [Google Scholar]
  7. Bauer, J. F., Meier, S., & Philipp, S. L. (2015). Architecture, fracture system, mechanical properties and permeability structure of a fault zone in Lower Triassic sandstone, Upper Rhine Graben. Tectonophysics, 647–648, 132–145. https://doi.org/10.1016/j.tecto.2015.02.014
    [Google Scholar]
  8. Bell, J. S. (1996). In situ stresses in sedimentary rocks (part 2): Applications of stress measurements. Geoscience Canada, 23, 135–153.
    [Google Scholar]
  9. Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., & Scibek, J. (2013). Fault zone hydrogeology. Earth‐Science Reviews, 127, 171–192. https://doi.org/10.1016/j.earscirev.2013.09.008
    [Google Scholar]
  10. Bense, V. F., & Person, M. A. (2006). Faults as conduit‐barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resources Research, 42(5), 640–18. https://doi.org/10.1029/2005WR004480
    [Google Scholar]
  11. Blott, S. J., Croft, D. J., Pye, K., Saye, S. E., & Wilson, H. E. (2004). Particle size analysis by laser diffraction. Geological Society, London, Special Publications, 232, 63–73. https://doi.org/10.1144/gsl.sp.2004.232.01.08
    [Google Scholar]
  12. Boggs, S., & Krinsley, D. (2006). Cathodoluminescence and its causes. In D.Krinsley, & S.Boggs (Eds.), Application of cathodoluminescence imaging to the study of sedimentary rocks (pp. 7–18). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  13. Boreham, C. J., Hope, J. M., Jackson, P., Davenport, R., Earl, K. L., Edwards, D. S., … Krassay, A. A. (2004). Gas‐oil‐source correlations in the Otway Basin. In P. J.Boult, D. R.Johns, & S. C.Lang (Eds.), Eastern Australian Basins Symposium II. Petroleum Exploration Society of Australia Special Publication (pp. 97–106).
    [Google Scholar]
  14. Bredehoeft, J. D. (1997). Fault permeability near Yucca Mountain. Water Resources Research, 33, 2459–2463. https://doi.org/10.1029/97WR01710
    [Google Scholar]
  15. Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24, 1025–1028. https://doi.org/10.1130/0091-7613(1996)024<1025:fzaaps>2.3.co;2
    [Google Scholar]
  16. Cavailhes, T., Sizun, J.‐P., Labaume, P., Chauvet, A., Buatier, M., Soliva, R., … Gout, C. (2013). Influence of fault rock foliation on fault zone permeability: The case of deeply buried arkosic sandstones (Gres d'Annot, southeastern France). AAPG Bulletin, 97, 1521–1543. https://doi.org/10.1306/03071312127
    [Google Scholar]
  17. Cooper, M. A., & Warren, M. J. (2010). The geometric characteristics, genesis and petroleum significance of inversion structures. Geological Society, London, Special Publications, 335, 827–846. https://doi.org/10.1144/sp335.33
    [Google Scholar]
  18. Debenham, N., King, R. C., & Holford, S. P. (2018). The influence of a reverse‐reactivated normal fault on natural fracture geometries and relative chronologies at Castle Cove, Otway Basin. Journal of Structural Geology, 112, 112–130. https://doi.org/10.1016/j.jsg.2018.05.004
    [Google Scholar]
  19. Duddy, I. R. (1994). The Otway Basin: Thermal, structural, tectonic and hydrocarbon generation histories. NGMA/PESA Otway Basin Symposium, Melbourne (pp. 35–42).
    [Google Scholar]
  20. Duddy, I. R. (2002). The Otway Basin: Geology, sedimentology, diagenesis, AFTA thermal history reconstruction and hydrocarbon prospectivity. Field Trip Guide prepared for the National Centre for Petroleum Geology and Geophysics, Adelaide. Geotrack International Pty. Ltd.
    [Google Scholar]
  21. Duddy, I. R. (2003). Mesozoic: A time of change in teconic regime. In W. D.Birch (Ed.), Geology of Victoria. GSA Special Publication 23 (pp. 239–286).
    [Google Scholar]
  22. Edwards, D. S., Struckmeyer, H. I. M., Bradshaw, M. T., & Skinner, J. E. (1999). Geochemical characteristics of Australia’s southern margin petroleum systems. The APPEA Journal, 39, 297–321. https://doi.org/10.1071/AJ98017
    [Google Scholar]
  23. Edwards, J., Leonard, J. G., Pettifer, G. R., & Mcdonald, P. A. (1996). Colac 1: 250000 Map Geological Report. Report 98. Geological Survey.
  24. Evans, J. P., Forster, C. B., & Goddard, J. V. (1997). Permeability of fault‐related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, 19, 1393–1404. https://doi.org/10.1016/S0191-8141(97)00057-6
    [Google Scholar]
  25. Fairley, J. P. (2009). Modeling fluid flow in a heterogeneous, fault‐controlled hydrothermal system. Geofluids, 9, 153–166. https://doi.org/10.1111/j.1468-8123.2008.00236.x
    [Google Scholar]
  26. Farrell, N. J. C., & Healy, D. (2017). Anisotropic pore fabrics in faulted porous sandstones. Journal of Structural Geology, 104, 125–141. https://doi.org/10.1016/j.jsg.2017.09.010
    [Google Scholar]
  27. Farrell, N. J. C., Healy, D., & Taylor, C. W. (2014). Anisotropy of permeability in faulted porous sandstones. Journal of Structural Geology, 63, 50–67. https://doi.org/10.1016/j.jsg.2014.02.008
    [Google Scholar]
  28. Faulkner, D. R., Jackson, C., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C., & Withjack, M. O. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32, 1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009
    [Google Scholar]
  29. Fisher, Q. J., & Knipe, R. J. (1998). Fault sealing processes in siliciclastic sediments. Geological Society, London, Special Publications, 147, 117–134. https://doi.org/10.1144/gsl.sp.1998.147.01.08
    [Google Scholar]
  30. Folch, A., & Mas‐Pla, J. (2008). Hydrogeological interactions between fault zones and alluvial aquifers in regional flow systems. Hydrological Processes, 22, 3476–3487. https://doi.org/10.1002/hyp.6956
    [Google Scholar]
  31. Fossen, H., Schultz, R. A., Shipton, Z. K., & Mair, K. (2007). Deformation bands in sandstone: A review. Journal of the Geological Society, 164, 755–769. https://doi.org/10.1144/0016-76492006-036
    [Google Scholar]
  32. Holford, P., Tuitt, A. K., Hillis, R. R., Green, P. F., Stoker, M. S., Duddy, I. R., … Tassone, D. R. (2014). Cenozoic deformation in the Otway Basin, southern Australian margin: Implications for the origin and nature of post‐breakup compression at rifted margins. Basin Research, 26, 10–37. https://doi.org/10.1111/bre.12035
    [Google Scholar]
  33. Katz, A. J., & Thompson, A. H. (1987). Prediction of rock electrical conductivity from mercury injection measurements. Journal of Geophysical Research: Solid Earth, 92, 599–607. https://doi.org/10.1029/JB092iB01p00599
    [Google Scholar]
  34. Kazemi, H. (1982). Low‐permeability gas sands. Journal of Petroleum Technology, 34, 2229–2232. https://doi.org/10.2118/11330-PA
    [Google Scholar]
  35. Klinkenberg, L. J. (1941). The permeability of porous media to liquids and gases (pp. 200–213). American Petroleum Institute, Drilling and Production Practice.
    [Google Scholar]
  36. Knipe, R. J., Jones, G., & Fisher, Q. J. (1998). Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: An introduction. Geological Society, London, Special Publications, 147, vii–xxi. https://doi.org/10.1144/gsl.sp.1998.147.01.01
    [Google Scholar]
  37. Krassay, A. A., Cathro, D. L., & Ryan, D. J. (2004). A regional tectonostratigraphic framework for the Otway Basin. In P. J.Boult, D. R.Johns, & S. C.Lang (Eds.), Eastern Australian Basins Symposium II (pp. 97–106). Petroleum Exploration Society of Australia Special Publication.
    [Google Scholar]
  38. Lanson, B., Beaufort, D., Berger, G., Bauer, A., CassagnabèRe, A., & Meunier, A. (2002). Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review. Clay Minerals, 37, 640–22. https://doi.org/10.1180/0009855023710014
    [Google Scholar]
  39. Laubach, S. E. (1997). A method to detect natural fracture strike in sandstones. AAPG Bulletin, 81, 604–623.
    [Google Scholar]
  40. Laubach, S. E., Olson, J. E., & Gross, M. R. (2009). Mechanical and fracture stratigraphy. AAPG Bulletin, 93, 1413–1426. https://doi.org/10.1306/07270909094
    [Google Scholar]
  41. Milliken, K. L., & Laubach, S. E. (2000). Brittle deformation in sandstone diagenesis as revealed by scanned cathodoluminescence imaging with application to characterization of fractured reservoirs. In M.Pagel, V.Barbin, P.Blanc, & D.Ohnenstetter (Eds.), Cathodoluminescence in geosciences (pp. 225–243). Berlin Heidelberg: Springer Berlin Heidelberg.
    [Google Scholar]
  42. Mitchell, T. M., & Faulkner, D. R. (2009). The nature and origin of off‐fault damage surrounding strike‐slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology, 31, 802–816. https://doi.org/10.1016/j.jsg.2009.05.002
    [Google Scholar]
  43. Mitchell, T. M., & Faulkner, D. R. (2012). Towards quantifying the matrix permeability of fault damage zones in low porosity rocks. Earth and Planetary Science Letters, 339–340, 24–31. https://doi.org/10.1016/j.epsl.2012.05.014
    [Google Scholar]
  44. Nara, Y., Meredith, P. G., Yoneda, T., & Kaneko, K. (2011). Influence of macro‐fractures and micro‐fractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics, 503, 52–59. https://doi.org/10.1016/j.tecto.2010.09.027
    [Google Scholar]
  45. Neasham, J. W. (1977). The morphology of dispersed clay in sandstone reservoirs and its effect on sandstone shaliness, pore space and fluid flow properties.
  46. Nemec, W. (1988). The shape of the rose. Sedimentary Geology, 59, 149–152. https://doi.org/10.1016/0037-0738(88)90105-4
    [Google Scholar]
  47. Norvick, M. S., & Smith, M. A. (2001). Mapping the plate tectonic reconstruction of southern and southeastern Australia and implications for petroleum systems. Journal of the Australian Petroleum Production and Exploration Association, 41, 15–35.
    [Google Scholar]
  48. Perincek, D., Simons, B., & Pettifer, G. R. (1994). The tectonic framework, and associated play types of the Western Otway Basin, Victoria, Australia. APPEA Journal, 34, 460–477.
    [Google Scholar]
  49. Pittman, E. D. (1979). Porosity, diagenesis and productive capacity of sandstone reservoirs. SEPM Special Publication, 26, 159–173.
    [Google Scholar]
  50. Rowland, J. V., & Sibson, R. H. (2004). Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids, 4, 259–283. https://doi.org/10.1111/j.1468-8123.2004.00091.x
    [Google Scholar]
  51. Schneider, C. L., Hill, K. C., & Hoffman, N. (2004). Compressional growth of the Minerva Anticline, Otway Basin, Southeast Australia–evidence of oblique rifting. APPEA Journal, 44, 463–480.
    [Google Scholar]
  52. Shipton, Z. K., & Cowie, P. A. (2001). Damage zone and slip‐surface evolution over μm to km scales in high‐porosity Navajo sandstone, Utah. Journal of Structural Geology, 23, 1825–1844. https://doi.org/10.1016/S0191-8141(01)00035-9
    [Google Scholar]
  53. Shipton, Z. K., Evans, J. P., Robeson, K. R., Forster, C. B., & Snelgrove, S. (2002). Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults. AAPG Bulletin, 86, 863–883. https://doi.org/10.1306/61eedbc0-173e-11d7-8645000102c1865d
    [Google Scholar]
  54. Sibson, R. H. (1994). Crustal stress, faulting and fluid flow. Geological Society, London, Special Publications, 78, 69–84. https://doi.org/10.1144/gsl.sp.1994.078.01.07
    [Google Scholar]
  55. Sibson, R. H., Moore, J. M. M., & Rankin, A. H. (1975). Seismic pumping—a hydrothermal fluid transport mechanism. Journal of the Geological Society, 131, 653–659. https://doi.org/10.1144/gsjgs.131.6.0653
    [Google Scholar]
  56. Streit, J. E., & Hillis, R. R. (2004). Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy, 29, 1445–1456. https://doi.org/10.1016/j.energy.2004.03.078
    [Google Scholar]
  57. Tassone, D. R., Holford, S. P., Duddy, I. R., Green, P. F., & Hillis, R. R. (2014). Quantifying Cretaceous‐Cenozoic exhumation in the Otway Basin, southeastern Australia, using sonic transit time data: Implications for conventional and unconventional hydrocarbon prospectivity. AAPG Bulletin, 98, 67–117. https://doi.org/10.1306/04011312111
    [Google Scholar]
  58. Tassone, D. R., Holford, S. P., Hillis, R. R., & Tuitt, A. K. (2012). Quantifying Neogene plate‐boundary controlled uplift and deformation of the southern Australian margin. Geological Society, London, Special Publications, 367, 91–110. https://doi.org/10.1144/sp367.7
    [Google Scholar]
  59. Tassone, D. R., Holford, S. P., King, R., Tingay, M. R. P., & Hillis, R. R. (2017). Contemporary stress and neotectonics in the Otway Basin, southeastern Australia. Geological Society, London, Special Publications, 458, https://doi.org/10.1144/sp458.10
    [Google Scholar]
  60. Webb, P. A. (2001). An introduction to the physical characterization of materials by mercury intrusion porosimetry with emphasis on reduction and presentation of experimental data. Norcross, GA: Micromeritics Instrument Corp.
    [Google Scholar]
  61. Wibberley, C. A. J., & Shimamoto, T. (2003). Internal structure and permeability of major strike‐slip fault zones: The Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology, 25, 59–78. https://doi.org/10.1016/S0191-8141(02)00014-7
    [Google Scholar]
  62. Wilson, J. E., Chester, J. S., & Chester, F. M. (2003). Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas system, California. Journal of Structural Geology, 25, 1855–1873. https://doi.org/10.1016/S0191-8141(03)00036-1
    [Google Scholar]
  63. Woodcock, N. H., Dickson, J. A. D., & Tarasewicz, J. P. T. (2007). Transient permeability and reseal hardening in fault zones: Evidence from dilation breccia textures. Geological Society, London, Special Publications, 270, 43–53. https://doi.org/10.1144/gsl.Sp.2007.270.01.03
    [Google Scholar]
  64. Zeng, L. (2010). Microfracturing in the Upper Triassic Sichuan Basin tight‐gas sandstones: Tectonic, overpressure, and diagenetic origins. AAPG Bulletin, 94, 1811–1825. https://doi.org/10.1306/06301009191
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12345
Loading
/content/journals/10.1111/bre.12345
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Otway Basin; permeability; porosity; reverse‐reactivated normal fault

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error