1887
Volume 67, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Seismic anisotropy has an important influence on seismic data processing and interpretation. Although the frequency‐domain seismic wavefield simulation has a problem of solving the large scale linear sparse matrix due to the computational limitations, it has some advantages over the time‐domain seismic wavefield simulation including efficient inversion using only a limited number of frequency components and easy implementation of multiple sources. To accurately simulate seismic wave propagation in the frequency domain, we also need to choose the absorbing boundary conditions to absorb artificial reflections from edges of the model as we do in the time domain. Compared with the classical boundary conditions including the perfectly matched layer and complex frequency‐shifted perfectly matched layer, the complex frequency‐shifted multi‐axial perfectly matched layer has been proven to effectively suppress the unwanted reflections at grazing incidence and solve the instability problem in the time‐domain seismic numerical modelling in anisotropic elastic media. In this paper, we propose to extend the complex frequency‐shifted multi‐axial perfectly matched layer absorbing boundary condition to the frequency‐domain seismic wavefield simulation in anisotropic elastic media. To test the validity of our proposed algorithm, we compare the results (snapshots and seismograms) of the frequency‐domain seismic wavefield simulation with those of the time‐domain modelling. The model studies indicate that the complex frequency‐shifted multi‐axial perfectly matched layer absorbing boundary condition is stable in the frequency‐domain seismic wavefield simulation in anisotropic media, and provides better absorbing performance than the complex frequency‐shifted perfectly matched layer boundary condition.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12780
2019-04-04
2024-04-19
Loading full text...

Full text loading...

References

  1. BécacheE. and JolyP.2002. On the analysis of Bérenger's perfectly matched layers for Maxwell's equations. ESAIM: Mathematical Modelling and Numerical Analysis36, 87–119.
    [Google Scholar]
  2. BécacheE., FauqueuxS. and JolyP.2003. Stability of perfectly matched layers, group velocities and anisotropic waves. Journal of Computational Physics188, 399–433.
    [Google Scholar]
  3. Ben‐Hadj‐AliH., OpertoS. and VirieuxJ.2011. An efficient frequency‐domain full waveform inversion method using simultaneous encoded sources. Geophysics76, 109–124.
    [Google Scholar]
  4. BerengerJ.P.1994. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics114, 185–200.
    [Google Scholar]
  5. CerjanC., KosloffD., KosloffR. and ReshefM.1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics50, 705–708.
    [Google Scholar]
  6. ClaytonR. and EngquistB.1977. Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of America67, 1529–1540.
    [Google Scholar]
  7. CollinoF. and TsogkaC.2001. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics66, 294–307.
    [Google Scholar]
  8. DmitrievM.N. and LisitsaV.V.2011. Application of M‐PML reflection‐less boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part I: reflectivity. Numerical Analysis and Applications4, 271–280.
    [Google Scholar]
  9. DoyonB. and GirouxB.2014. Practical aspects of 2.5D frequency‐domain finite‐difference modelling of viscoelastic waves. SEG Technical Program, Expanded Abstracts3482–3486.
    [Google Scholar]
  10. FaccioliE., MaggioF., PaolucciR. and QuarteroniA.1997. 2D and 3D elastic wave propagation by a pseudo‐spectral domain decomposition method. Journal of seismology1, 237–251.
    [Google Scholar]
  11. FestaG., DelavaudE. and VilotteJ.P.2005. Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations. Geophysical Research Letters32, 20306.
    [Google Scholar]
  12. GuddatiM.N. and LimK.W.2006. Continued fraction absorbing boundary conditions for convex polygonal domains. International Journal for Numerical Methods in Engineering66, 949–977.
    [Google Scholar]
  13. HestholmS.2009. Acoustic VTI modeling using high‐order finite differences. Geophysics74, 67–73.
    [Google Scholar]
  14. JeongW., MinD.J., LeeG.H. and LeeH.Y.2011. 2D frequency‐domain elastic full waveform inversion using finite‐element method for VTI media. SEG Technical Program, Expanded Abstracts2654–2658.
    [Google Scholar]
  15. KomatitschD. and MartinR.2007. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics72, 155–167.
    [Google Scholar]
  16. LanH. and ZhangZ.2011. Comparative study of the free‐surface boundary condition in two‐dimensional finite‐difference elastic wave field simulation. Journal of Geophysics and Engineering8, 275–286.
    [Google Scholar]
  17. LiY., MétivierL., BrossierR., HanB. and VirieuxJ.2015. 2D and 3D frequency‐domain elastic wave modeling in complex media with a parallel iterative solver. Geophysics80, 101–118.
    [Google Scholar]
  18. LiaoJ., WangH. and MaZ.2009. 2‐D elastic wave modeling with frequency‐space 25‐point finite‐difference operators. Applied Geophysics6, 259–266.
    [Google Scholar]
  19. LiuW., LinP., LüQ., ChenR., CaiH. and LiJ.2017. Time domain and frequency domain induced polarization modeling for three‐dimensional anisotropic medium. Journal of Environmental and Engineering Geophysics22, 435–439.
    [Google Scholar]
  20. MarfurtK.J.1984. Accuracy of finite‐difference and finite‐element modeling of the scalar and elastic wave equations. Geophysics49, 533–549.
    [Google Scholar]
  21. Meza‐FajardoK.C. and PapageorgiouA.S.2008. A nonconvolutional, split‐field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis. Bulletin of the Seismological Society of America98, 1811–1836.
    [Google Scholar]
  22. MoreiraR.M., Cetale SantosM.A., MartinsJ.L., SilvaD.L.F., PessolaniR.B.V., FilhoD.M.S., et al. 2014. Frequency‐domain acoustic‐wave modeling with hybrid absorbing boundary conditions. Geophysics79, 39–44.
    [Google Scholar]
  23. OpertoS., VirieuxJ., AmestoyP., L'ExcellentJ.Y., GiraudL. and AliH.B.H.2007. 3D finite‐difference frequency‐domain modeling of visco‐acoustic wave propagation using a massively parallel direct solver: a feasibility study. Geophysics72, 195–211.
    [Google Scholar]
  24. OpertoS., VirieuxJ., RibodettiA. and AndersonJ.E.2009. Finite‐difference frequency‐domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media. Geophysics74, 75–95.
    [Google Scholar]
  25. PingP., ZhangY. and XuY.2014. A multiaxial perfectly matched layer (M‐PML) for the long‐time simulation of elastic wave propagation in the second‐order equations. Journal of Applied Geophysics101, 124–135.
    [Google Scholar]
  26. PrattR.G.1990. Frequency‐domain elastic wave modeling by finite differences: a tool for crosshole seismic imaging. Geophysics55, 626–632.
    [Google Scholar]
  27. RodenJ.A. and GedneyS.D.2000. Convolutional PML (CPML): an efficient FDTD implementation of the CFS‐PML for arbitrary media. Microwave and Optical Technology Letters27, 334–338.
    [Google Scholar]
  28. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  29. TianK., HuangJ., LiZ., CaoX., LiQ. and LuP.2014. Multi‐axial convolution perfectly matched layer absorption boundary condition. Oil Geophysical Prospecting1, 143–152.
    [Google Scholar]
  30. WangY.2015. Frequencies of the Ricker wavelet. Geophysics80, 31–37.
    [Google Scholar]
  31. WangS., de HoopM.V., XiaJ. and LiX.S.2012. Massively parallel structured multifrontal solver for time‐harmonic elastic waves in 3‐D anisotropic media. Geophysical Journal International191, 346–366.
    [Google Scholar]
  32. YinW., YinX.Y., WuG.C. and LiangK.2006. The method of finite difference of high precision elastic wave equations in the frequency domain and wave‐field simulation. Chinese Journal of Geophysics49, 561–568.
    [Google Scholar]
  33. YuanS., WangS., SunW., MiaoL. and LiZ.2014. Perfectly matched layer on curvilinear grid for the second‐order seismic acoustic wave equation. Exploration Geophysics45, 94–104.
    [Google Scholar]
  34. ZengC., XiaJ., MillerR. and TsofliasG.2011. Application of the multiaxial perfectly matched layer (M‐PML) to near‐surface seismic modeling with Rayleigh waves. Geophysics76, T43–T52.
    [Google Scholar]
  35. ZhangZ., ZhangW. and ChenX.2014. Complex frequency‐shifted multi‐axial perfectly matched layer for elastic wave modelling on curvilinear grids. Geophysical Journal International198, 140–153.
    [Google Scholar]
  36. ZhaoJ., HuangX., LiuW., ZhaoW., SongJ., XiongB., et al. 2017. 2.5‐D frequency‐domain viscoelastic wave modelling using finite‐element method. Geophysical Journal International211, 164–187.
    [Google Scholar]
  37. ZhouB., GreenhalghS. and MaurerH.2012. 2.5‐D frequency‐domain seismic wave modeling in heterogeneous, anisotropic media using a Gaussian quadrature grid technique. Computers and Geosciences39, 18–33.
    [Google Scholar]
  38. ZhuH., ZhangW. and ChenX.2009. Two‐dimensional seismic wave simulation in anisotropic media by non‐staggered finite difference method. Chinese Journal of Geophysics52, 1536–1546.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12780
Loading
/content/journals/10.1111/1365-2478.12780
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error