1887
Volume 31, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Source‐to‐sink studies and numerical modelling software are increasingly used to better understand sedimentary basins, and to predict sediment distributions. However, predictive modelling remains problematic in basins dominated by salt tectonics. The Lower Cretaceous delta system of the Scotian Basin is well suited for source‐to‐sink studies and provides an opportunity to apply this approach to a region experiencing active salt tectonism. This study uses forward stratigraphic modelling software and statistical analysis software to produce predictive stratigraphic models of the central Scotian Basin, test their sensitivity to different input parameters, assess proposed provenance pathways, and determine the distribution of sand and factors that control sedimentation in the basin. Models have been calibrated against reference wells and seismic surfaces, and implement a multidisciplinary approach to define simulation parameters. Simulation results show that previously proposed provenance pathways for the Early Cretaceous can be used to generate predictive stratigraphic models, which simulate the overall sediment distribution for the central Scotian Basin. Modelling confirms that the shaly nature of the Naskapi Member is the result of tectonic diversion of the Sable and Banquereau rivers and suggests additional episodic diversion during the deposition of the Cree Member. Sand is dominantly trapped on the shelf in all units, with transport into the basin along salt corridors and as a result of turbidity current flows occurring in the Upper Missisauga Formation and Cree Member. This led to sand accumulation in minibasins with a large deposit seawards of the Tantallon M‐41 well. Sand also appears to bypass the basin via salt corridors which lead to the down‐slope edge of the study area. Sensitivity analysis suggests that the grain size of source sediments to the system is the controlling factor of sand distribution. The methodology applied to this basin has applications to other regions complicated by salt tectonics, and where sediment distribution and transport from source‐to‐sink remain unclear.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12342
2019-03-18
2024-03-28
Loading full text...

Full text loading...

References

  1. Agrawal, D., Dwivedi, S., Barrois, A., Koeck, C., El‐Wazir, Z., Al‐Madani, N., & Aillud, G. (2015). Impact of Environmental Parameters on Forward Stratigraphic Modelling from Uncertainty Analysis; Lower Cretaceous, Abu Dhabi. In SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE, Society of Petroleum Engineers, 12 pp.
  2. Albertz, M., Beaumont, C., Shimeld, J. W., Ings, S. J., & Gradmann, S. (2010). An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 1. Comparison of observations with geometrically simple numerical models. Tectonics, 29(4),TC4017. https://doi.org/10.1029/2009TC002539
    [Google Scholar]
  3. Allen, P. A. (2008). From landscapes into geological history. Nature, 451, 274–276. https://doi.org/10.1038/nature06586
    [Google Scholar]
  4. Beck, M. E. J., & Housen, B. A. (2003). Absolute velocity of North America during the Mesozoic from paleomagnetic data. Tectonophysics, 377, 33–54. https://doi.org/10.1016/j.tecto.2003.08.018
    [Google Scholar]
  5. Bowman, S. J., Pe‐Piper, G., Piper, D. J. W., Fensome, R. A., & King, E. L. (2012). Early Cretaceous volcanism in the Scotian Basin. Canadian Journal of Earth Sciences, 49, 1523–1539.
    [Google Scholar]
  6. BrownJr., L. F., & Loucks, R. G. (2009). Chronostratigraphy of Cenozoic depositional sequences and systems tracts: A Wheeler chart of the northwest margin of the Gulf of Mexico Basin. The University of Texas at Austin, Bureau of Economic Geology Report of Investigations, 273, 28.
    [Google Scholar]
  7. Chavez, I., Piper, D. J. W., & Pe‐Piper, G. (2018). Correlation of the Aptian Naskapi member of the scotian basin and its regional implications. Canadian Journal of Earth Sciences, 55, 514–535. https://doi.org/10.1139/cjes-2017-0205
    [Google Scholar]
  8. Chorowicz, J. (2005). The east African rift system. Journal of African Earth Sciences, 43, 379–410. https://doi.org/10.1016/j.jafrearsci.2005.07.019
    [Google Scholar]
  9. Cummings, D. I., & Arnott, R. W. C. (2005). Growth‐faulted shelf‐margin deltas: A new (but old) play type, offshore Nova Scotia. Bulletin of Canadian Petroleum Geology, 53, 211–236. https://doi.org/10.2113/53.3.211
    [Google Scholar]
  10. Cummings, D. I., Hart, B. S., & Arnott, R. W. C. (2006). Sedimentology and stratigraphy of a thick, areally extensive fluvial–marine transition, Missisauga Formation, offshore Nova Scotia, and its correlation with shelf margin and slope strata. Bulletin of Canadian Petroleum Geology, 54, 152–174. https://doi.org/10.2113/gscpgbull.54.2.152
    [Google Scholar]
  11. Dai, A., & Trenberth, K. E. (2002). Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. Journal of Hydrometeorology, 3, 660–687. https://doi.org/10.1175/1525-7541(2002)0030660:EOFDFC2.0.CO;2
    [Google Scholar]
  12. Delaplace, P., Renard, G., Delamaide, E., Euzen, T., Roggero, F., & Kopecny, P. (2013). Reservoir simulations of a polymer flood pilot in the pelican lake heavy oil field (Canada): A step forward. In SPE Reservoir Characterization and Simulation Conference and Exhibition, Abu Dhabi, UAE, Society of Petroleum Engineers, 14 pp.
  13. Deptuck, M. E. (2008). Call for Bids – Sub‐regional geology and exploration potential for Parcels 1 and 2, Central Scotian Slope. CNSOPB Call for Bids. Geoscience Package, NS08‐2,49 pp.
  14. Deptuck, M. E., Kendell, K., Brown, D. E., & Smith, B. M. (2014). Seismic stratigraphic framework and structural evolution of the eastern Scotian Slope: geological context for the NS14‐1 Call for Bids area, offshore Nova Scotia. CNSOPB Open File Report, 2014–001MF, 58 pp.
  15. Deptuck, M. E., Brown, D. E., & Altheim, B. (2015). Call for Bids NS15‐1 – Exploration history, geologic setting, and exploration potential: Western and Central regions. CNSOPB Open File Report, 2015–001MF, 49 pp.
  16. Deville, E., Mascle, A., Callec, Y., Huyghe, P., Lallemant, S., Lerat, O., … Pichot, T. (2015). Tectonics and sedimentation interactions in the east Caribbean subduction zone: An overview from the Orinoco delta and the Barbados accretionary prism. Marine and Petroleum Geology, 64, 76–103. https://doi.org/10.1016/j.marpetgeo.2014.12.015
    [Google Scholar]
  17. Dickie, K., Keen, C. E., Williams, G. L., & Dehler, S. A. (2011). Tectonostratigraphic evolution of the Labrador margin, Atlantic Canada. Marine and Petroleum Geology, 28, 1663–1675. https://doi.org/10.1016/j.marpetgeo.2011.05.009
    [Google Scholar]
  18. Falcon‐Lang, H. J., Fensome, R. A., Gibling, M. R., Malcolm, J., Fletcher, K. R., & Holleman, M. (2007). Karst‐related outliers of the Cretaceous Chaswood Formation of maritime Canada. Canadian Journal of Earth Sciences, 44(5), 619–642. https://doi.org/10.1139/e06-119
    [Google Scholar]
  19. Gould, K., Pe‐Piper, G., & Piper, D. J. W. (2010). Relationship of diagenetic chlorite rims to depositional facies in Lower Cretaceous reservoir sandstones of the Scotian Basin. Sedimentology, 57, 587–610. https://doi.org/10.1111/j.1365-3091.2009.01106.x
    [Google Scholar]
  20. Gould, K. M., Piper, D. J. W., & Pe‐Piper, G. (2012). Lateral variation in sandstone lithofacies from conventional core, Scotian Basin: Implications for reservoir quality and connectivity. Canadian Journal of Earth Sciences, 49, 1478–1503.
    [Google Scholar]
  21. Gould, K. M., Piper, D. J. W., Pe‐Piper, G., & MacRae, R. A. (2014). Facies, provenance and paleoclimate interpretation using spectral gamma logs: Application to the Lower Cretaceous of the Scotian Basin. Marine and Petroleum Geology, 57, 445–454. https://doi.org/10.1016/j.marpetgeo.2014.06.008
    [Google Scholar]
  22. Granjeon, D. (1996). Modelisation stratigraphique deterministe—conception et applications d’un modele diffusif 3D multi‐lithologique. Rennes, France: Geosciences Rennes, Universite de Rennes 1.
    [Google Scholar]
  23. Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3‐D multiple lithology, diffusive model in stratigraphic modeling. Society for Sedimentary Geology Special Publications, 62, 197–210.
    [Google Scholar]
  24. Grist, A., Reynolds, P., Zentilli, M., & Beaumont, C. (1992). The Scotian Basin offshore Nova Scotia: Thermal history and provenance of sandstones from apatite fission track and 40Ar/39Ar data. Canadian Journal of Earth Sciences, 29, 909–924.
    [Google Scholar]
  25. Grist, A. M., Ryan, R., & Zentilli, M. (1995). The thermal evolution and timing of hydrocarbon generation in the Maritimes Basin of eastern Canada: Evidence from apatite fission track data. Bulletin of Canadian Petroleum Geology, 43, 145–155.
    [Google Scholar]
  26. Hawie, N., Barrois, A., Marfisi, E., Murat, B., Hall, J., El‐Wazir, Z., …Aillud, G. (2015). Forward Stratigraphic Modelling, Deterministic Approach to Improve Carbonate Heterogeneity Prediction; Lower Cretaceous, Abu Dhabi. In Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, Society of Petroleum Engineers, 15 pp.
  27. Hawie, N., Covault, J. A., Dunlap, D., & Sylvester, Z. (2018). Slope‐fan depositional architecture from high‐resolution forward stratigraphic models. Marine and Petroleum Geology, 91, 576–585. https://doi.org/10.1016/j.marpetgeo.2017.12.033
    [Google Scholar]
  28. Hawie, N., Deschamps, R., Granjeon, D., Nader, F. H., Gorini, C., Müller, C., … Baudin, F. (2017). Multi‐scale constraints of sediment source to sink systems in frontier basins: A forward stratigraphic modelling case study of the Levant region. Basin Research, 29, 418–445. https://doi.org/10.1111/bre.12156
    [Google Scholar]
  29. Haywood, A. M., Valdes, P. J., & Markwick, P. J. (2004). Cretaceous (Wealden) climates: a modelling perspective. Cretaceous Research, 25, 303–311.
    [Google Scholar]
  30. Hendriks, M., Jamieson, R. A., Willett, S., & Zentilli, M. (1993). Burial and exhumation of the Long Range Inlier and its surroundings, western Newfoundland: Results of an apatite fission‐track study. Canadian Journal of Earth Sciences, 30, 1594–1606. https://doi.org/10.1139/e93-137
    [Google Scholar]
  31. Huang, X., Griffiths, C., & Liu, J. (2015). Recent development in stratigraphic forward modelling and its application in petroleum exploration. Australian Journal of Earth Sciences, 62, 903–919. https://doi.org/10.1080/08120099.2015.1125389
    [Google Scholar]
  32. Jansa, L. F., & Pe‐Piper, G. (1985). Early Cretaceous volcanism on the northeastern American margin and implications for plate tectonics. Geological Society of America Bulletin, 96, 83–91. https://doi.org/10.1130/0016-7606(1985)9683:ECVOTN2.0.CO;2
    [Google Scholar]
  33. Jansa, L. F., & Wade, J. A. (1975). Geology of the continental margin off Nova Scotia and Newfoundland. In W. J. M.van der Linden, & J. A.Wade (Eds.), Offshore geology of eastern Canada, Part 2 Regional geology (pp. 51–106). Ottawa, ON: Geological Survey of Canada.
    [Google Scholar]
  34. Keen, M. J., & Piper, D. J. W. (1990). Geological and historical perspective. In M. J.Keen et al. (Eds.), Geology of the continental margin of eastern Canada. Geological Survey of Canada, Geology of Canada (vol. 2, pp. 5–30). Ottawa, ON: Geological Survey of Canada.
    [Google Scholar]
  35. Kendell, K. L. (2012). Variations in salt expulsion style within the Sable canopy complex, central Scotian margin. Canadian Journal of Earth Sciences, 49, 1504–1522.
    [Google Scholar]
  36. Kidston, A. G., Smith, B., Brown, D. E., Makrides, C., & Altheim, B. (2007). Nova Scotia deep water offshore post‐drill analysis 1982–2004 (pp. 181). Halifax, NS: Canada‐Nova Scotia Offshore Petroleum Board.
    [Google Scholar]
  37. Kubo, Y. S., Syvitski, J. P., Hutton, E. W., & Paola, C. (2005). Advance and application of the stratigraphic simulation model 2D‐SedFlux: From tank experiment to geological scale simulation. Sedimentary Geology, 178, 187–195. https://doi.org/10.1016/j.sedgeo.2005.04.005
    [Google Scholar]
  38. Lacroix, S., & Albadi, B. S. (2012). Improving the Uncertainty Understanding for the Optimal Development of an Abu Dhabi Offshore Green Field. In Abu Dhabi International Petroleum Conference and Exhibition, Abu Dhabi, UAE, Society of Petroleum Engineers, 9 pp.
  39. Li, G., Ravenhurst, C., & Zentilli, M. (1995). Implications of apatite fission track analysis for the thermal history of the Scotian Basin, offshore Nova Scotia, Canada. Bulletin of Canadian Petroleum Geology, 43, 127–144.
    [Google Scholar]
  40. Louden, K. E., Tucholke, B. E., & Oakey, G. N. (2004). Regional anomalies of sediment thickness, basement depth and isostatic crustal thickness in the North Atlantic Ocean. Earth and Planetary Science Letters, 224, 193–211. https://doi.org/10.1016/j.epsl.2004.05.002
    [Google Scholar]
  41. Lowe, D. G., Sylvester, P. J., & Enachescu, M. E. (2011). Provenance and paleodrainage patterns of Upper Jurassic and Lower Cretaceous synrift sandstones in the Flemish Pass Basin, offshore Newfoundland, east coast of Canada. AAPG Bulletin, 95, 1295–1320. https://doi.org/10.1306/12081010005
    [Google Scholar]
  42. Macgregor, D. S. (2012). The development of the Nile drainage system: Integration of onshore and offshore evidence. Petroleum Geoscience, 18, 417–431. https://doi.org/10.1144/petgeo2011-074
    [Google Scholar]
  43. Martinsen, O., Sømme, T., Thurmond, J., Helland‐Hansen, W., & Lunt, I. (2010). Source‐to‐sink systems on passive margins: theory and practice with an example from the Norwegian continental margin. In B. A.Vining, et al. (Eds.), Petroleum geology: From mature basins to new frontiers (vol. 7, pp. 913–920), Proceeding of the 7th Petroleum Geology Conference, 7, 913–920. London, UK: Geological Society of London.
    [Google Scholar]
  44. McDonnell, A., Loucks, R. G., & Galloway, W. E. (2008). Paleocene to Eocene deep‐water slope canyons, western Gulf of Mexico: Further insights for the provenance of deep‐water offshore Wilcox Group plays. AAPG Bulletin, 92, 1169–1189. https://doi.org/10.1306/05150808014
    [Google Scholar]
  45. Meade, R. H. (1972). Sources and sinks of suspended matter on continental shelves. Shelf sediment transport: Process and pattern, 249–260.
  46. Meade, R. H. (1982). Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States. The Journal of Geology, 90, 235–252. https://doi.org/10.1086/628677
    [Google Scholar]
  47. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., … Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  48. Milliman, J. D., & Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100, 525–544. https://doi.org/10.1086/629606
    [Google Scholar]
  49. Natural Resources Canada
    Natural Resources Canada (2016). Basin database [online]. Retrieved from http://basin.gdr.nrcan.gc.ca/wells/index_e.php
  50. Nesse, W. D. (2013). Introduction to optical mineralogy, 4th ed. New York, NY: Oxford University Press.
    [Google Scholar]
  51. OERA (Offshore Energy Research Association)
    OERA (Offshore Energy Research Association) . (2016). Central Scotian Slope atlas [online]. Retrieved from http://www.oera.ca/offshore-energy-research/geoscience/central-scotian-slope-atlas-2016/
  52. OETR (Offshore Energy Technical Research Association)
    OETR (Offshore Energy Technical Research Association) (2011). Play fairway analysis atlas—offshore Nova Scotia. Nova Scotia Department of Energy, 88‐11‐0004‐01, 349 pp.
  53. Patruno, S., Hampson, G. J., & Jackson, C. A. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119. https://doi.org/10.1016/j.earscirev.2015.01.004
    [Google Scholar]
  54. Pe‐Piper, G., & Piper, D. J. W. (2010). Volcanic ash in the lower Cretaceous Chaswood Formation of Nova Scotia: Source and implications. Canadian Journal of Earth Sciences, 47, 1427–1443.
    [Google Scholar]
  55. Pe‐Piper, G., Piper, D. J. W. (2012). The impact of early cretaceous deformation on deposition in the passive‐margin scotian basin, offshore Eastern Canada. In C.Busby (Ed.), Tectonics of sedimentary basins: recent advances, Chapter 13 (pp. 270–287). Chichester, West Sussex, UK: Blackwell‐Wileys.
    [Google Scholar]
  56. Pe‐Piper, G., Piper, D. J. W., & Triantafyllidis, S. (2014). Detrital monazite geochronology, Upper Jurassic‐Lower Cretaceous of the Scotian Basin: Significance for tracking first‐cycle sources. Geological Society, London, Special Publications, 386, 293–311. https://doi.org/10.1144/SP386.13
    [Google Scholar]
  57. Pe‐Piper, G., Triantafyllidis, S., & Piper, D. J. W. (2008). Geochemical identification of clastic sediment provenance from known sources of similar geology: The Cretaceous Scotian Basin, Canada. Journal of Sedimentary Research, 78, 595–607. https://doi.org/10.2110/jsr.2008.067
    [Google Scholar]
  58. Piper, D. J. W., Bowman, S. J., Pe‐Piper, G., & MacRae, R. A. (2011). The ups and downs of Guysborough County‐the mid Cretaceous Naskapi Member in the Scotian Basin: Eustacy or tectonics?Atlantic Geology, 47, 36–37.
    [Google Scholar]
  59. Piper, D. J. W., Noftall, R., & Pe-Piper, G. (2010). Allochthonous prodeltaic sediment facies in the Lower Cretaceous at the Tantallon M-41 well: Implications for the deep-water Scotian Basin. AAPG bulletin, 94, 87–104.
    [Google Scholar]
  60. Piper, D. J. W., Pe‐Piper, G., & Ingram, S. C. (2004). Early Cretaceous sediment failure in the southwestern Sable Subbasin, offshore Nova Scotia. AAPG Bulletin, 88, 991–1006. https://doi.org/10.1306/01290403120
    [Google Scholar]
  61. Piper, D. J. W., Pe‐Piper, G., Tubrett, M., Triantafyllidis, S., & Strathdee, G. (2012). Detrital zircon geochronology and polycyclic sediment sources, Upper Jurassic‐Lower Cretaceous of the Scotian Basin, southeastern Canada. Canadian Journal of Earth Sciences, 49, 1540–1557.
    [Google Scholar]
  62. Prather, B. E. (2000). Calibration and visualization of depositional process models for above‐grade slopes: A case study from the Gulf of Mexico. Marine and Petroleum Geology, 17, 619–638. https://doi.org/10.1016/S0264-8172(00)00015-5
    [Google Scholar]
  63. Rabineau, M., Berné, S., Aslanian, D., Olivet, J. L., Joseph, P., Guillocheau, F., … Granjeon, D. (2005). Sedimentary sequences in the Gulf of Lion: a record of 100,000 years climatic cycles. Marine and Petroleum Geology, 22, 775–804.
    [Google Scholar]
  64. Reynolds, P. H., Pe‐Piper, G., & Piper, D. J. W. (2012). Detrital muscovite geochronology and the Cretaceous tectonics of the inner Scotian Shelf, southeastern Canada. Canadian Journal of Earth Sciences, 49, 1558–1566.
    [Google Scholar]
  65. Reynolds, P. H., Pe-Piper, G., Piper, D. J., & Grist, A. M. (2009). Single-grain detrital-muscovite ages from Lower Cretaceous sandstones, Scotian basin, and their implications for provenance. Bulletin of Canadian Petroleum Geology, 57, 63–80.
    [Google Scholar]
  66. Rosenfield, J., Pindall, J. (2003). Early Paleogene isolation of the Gulf of Mexico from the World’s Ocean? Implications for hydrocarbon exploration and eustacy. In C.Batolini (Ed.), The circum‐Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics: American Association of Petroleum Geologists Memoir 79 (pp. 89–103). Tulsa, Oklahoma: United States of America.
    [Google Scholar]
  67. Shimeld, J. (2004). A comparison of salt tectonic subprovinces beneath the Scotian Slope and Laurentian Fan. In P. J.Post et al. (Eds.), Salt‐sediment interactions and hydrocarbon prospectivity: Concepts, applications, and case studies for the 21st century: 24th Annual Gulf Coast Section SEPM Foundation Bob F. Perkins Research Conference Proceedings (pp. 502–532). Houston, TX: United States of America.
    [Google Scholar]
  68. Smith, B., & Kendell, K. (2011). Sediment transportation, Sable delta to deepwater, 2011 AAPG ICE: Nova Scotia Play Fairway Analysis Seminar Technical Presentations, AAPG Seminar – Brent Smith [online]. Retrieved from https://energy.novascotia.ca/oil-and-gas/offshore/play-fairway-analysis/data-and-presentations
  69. Sømme, T. O., Helland‐Hansen, W., Martinsen, O. J., & Thurmond, J. B. (2009b). Relationships between morphological and sedimentological parameters in source‐to‐sink systems: A basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Research, 21, 361–387.
    [Google Scholar]
  70. Sømme, T. O., Martinsen, O. J., & Thurmond, J. B. (2009a). Reconstructing morphological and depositional characteristics in subsurface sedimentary systems: An example from the Maastrichtian‐Danian Ormen Lange system, More Basin, Norwegian Sea. AAPG Bulletin, 93, 1347–1377.
    [Google Scholar]
  71. Sweet, M. L., & Blum, M. D. (2011). Paleocene‐Eocene Wilcox submarine canyons and thick deepwater sands of the Gulf of Mexico: Very large systems in a greenhouse world, not a Messinian‐like crisis. Transactions‐Gulf Coast Association of Geological Societies, 61, 443–450.
    [Google Scholar]
  72. Tappe, S., Foley, S. F., Stracke, A., Romer, R. L., Kjarsgaard, B. A., Heaman, L. M., & Joyce, N. (2007). Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives. Earth and Planetary Science Letters, 256, 433–454. https://doi.org/10.1016/j.epsl.2007.01.036
    [Google Scholar]
  73. Tsikouras, B., Pe‐Piper, G., Piper, D. J. W., & Schaffer, M. (2011). Varietal heavy mineral analysis of sediment provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sedimentary Geology, 237, 150–165. https://doi.org/10.1016/j.sedgeo.2011.02.011
    [Google Scholar]
  74. Tucker, G. E., & Slingerland, R. L. (1994). Erosional dynamics, flexural isostasy, and long‐lived escarpments: A numerical modeling study. Journal of Geophysical Research: Solid Earth, 99, 12229–12243.
    [Google Scholar]
  75. Twenhofel, W. H., & Macclintock, P. (1940). Surface of Newfoundland. Bulletin of the Geological Society of America, 51, 1665–1728. https://doi.org/10.1130/GSAB-51-1665
    [Google Scholar]
  76. Wade, J., & Maclean, B. (1990). The geology of the southeastern margin of Canada. In M. J.Keen, et al. (Eds.), Geology of the continental margin of eastern Canada. Geological Survey of Canada, Geology of Canada (vol. 2, pp. 167–238). Ottawa, ON: Geological Survey of Canada.
    [Google Scholar]
  77. Weston, J. F., MacRae, R. A., Ascoli, P., Cooper, M. K. E., Fensome, R. A., Shaw, D., & Williams, G. L. (2012). A revised biostratigraphic and well‐log sequence‐stratigraphic framework for the Scotian Margin, offshore eastern Canada. Canadian Journal of Earth Sciences, 49, 1417–1462.
    [Google Scholar]
  78. Williams, H., & Grant, A. (1998). Tectonic assemblages, Atlantic region, Canada. Geological Survey of Canada Open‐File, 3657, 728 pp.
  79. Wolman, M. G., & Gerson, R. (1978). Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes and Landforms, 3, 189–208. https://doi.org/10.1002/esp.3290030207
    [Google Scholar]
  80. Zhang, Y., Pe‐Piper, G., & Piper, D. J. W. (2014). Sediment geochemistry as a provenance indicator: Unravelling the cryptic signatures of polycyclic sources, climate change, tectonism and volcanism. Sedimentology, 61, 383–410. https://doi.org/10.1111/sed.12066
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12342
Loading
/content/journals/10.1111/bre.12342
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error