Home

Quick Links

Search

 
Comparing simulations of hydrogen storage in a sandstone formation using heterogeneous and homogenous flow property modelsNormal access

Authors: W.T. Pfeiffer and S. Bauer
Journal name: Petroleum Geoscience
Issue: Vol 25, No 3, August 2019 pp. 325 - 336
DOI: doi.org/10.1144/petgeo2018-101
Organisations: Geological Society of London
Language: English
Info: Article, PDF ( 1.91Mb )
Price: € 30

Summary:
Hydrogen storage in porous geological formations is a potential option to mitigate offsets between power demand and generation in an energy system largely based on renewables. Incorporating hydrogen storage into the energy network requires the consideration of multiple scenarios for storage settings and potential loading cycles, causing a high computational effort. Therefore, homogenous replacement models are constructed by applying different spatial averaging methods for permeability and linearized relative permeability to an ensemble of heterogeneous reservoir representations of a potential hydrogen storage site. The applicability of these replacement models for approximating storage characteristics, such as well flow rates, pressure changes and power rates, is investigated by comparing their results to the results of the full heterogeneous ensemble. It is found that using the arithmetic mean to estimate the lateral and the harmonic mean for the vertical permeability in the homogeneous replacement models provides an approximation to the median of the heterogeneous ensemble for pressure changes, storage flow rate, gas in place and power output. Basic time-dependent effects of reducing well flow, and thus the power rates, during an extraction cycle can also be represented by these homogeneous replacement models. Using geometric means is found not to yield a valid representation of the storage behaviour.


Back to the article list