1887
Volume 25, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Aquifer thermal energy storage (ATES) as a complement to fluctuating renewable energy systems is a reliable technology to guarantee continuous energy supply for heating and air conditioning. We investigated a high-temperature (HT) mono-well system (. 100°C), where the well screens are separated vertically within the aquifer, as an alternative to conventional doublet ATES systems for an underground storage in northern Oman. We analysed the impact of thermal inference between injection and extraction well screens on the heat recovery factor (HRF) in order to define the optimal screen-to-screen distance for best possible systems efficiency. Two controlling interference parameters were considered: the vertical screen-to-screen distance and aquifer heterogeneities. The sensitivity study shows that with decreasing screen-to-screen distances, thermal interference increases storage performance. A turning point is reached if the screen distance is too close, causing either water breakthrough or negative thermal interference between the screens. Our simulations show that a combined heat plume with spherical geometry results in the highest heat recovery factors due to the lowest surface area to volume ratios. Thick aquifers for mono-well HT-ATES are thus not mandatory. Our study shows that a HT-ATES mono-well system is a feasible storage design with high heat recovery factors for continuous cooling or heating purposes.

Companion

This article is accompanied by the following content:
Introducing the Energy Geoscience Series

Companion

This article is accompanied by the following content:
Introducing the Energy Geoscience Series
Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-104
2019-03-21
2024-04-20
Loading full text...

Full text loading...

References

  1. Abbasi, I.A., Salad Hersi, O. & Al-Harthy, A.
    2014. Late Cretaceous Conglomerates of the Qahlah Formation, north Oman. In: Rollinson, H.R., Searle, M.P., Abbasi, I.A., Al-Lazki, A. & Al Kindi, M.H. (eds) Tectonic Evolution of the Oman Mountains. Geological Society, London, Special Publications, 392, 325–341, https://doi.org/10.1144/SP392.17
    [Google Scholar]
  2. Amour, F., Mutti, M. et al.
    2013. Outcrop analog for an oolitic carbonate ramp reservoir: A scale-dependent geologic modeling approach based on stratigraphic hierarchy. AAPG Bulletin, 97, 845–871, https://doi.org/10.1306/10231212039
    [Google Scholar]
  3. Bakr, M., Van Oostrom, N. & Sommer, W.
    2013. Efficiency of and interference among multiple Aquifer Thermal Energy Storage systems; A Dutch case study. Renewable Energy, 60, 53–62, https://doi.org/10.1016/j.renene.2013.04.004
    [Google Scholar]
  4. Bear, J.
    1991. Modelling Transport Phenomena in Porous Media. In: Kakaç, S., Kilkiş, B., Kulacki, F.A., Arinç, F. (eds) Convective Heat and Mass Transfer in Porous Media. Springer, Dordrecht, The Netherlands, 7–69, https://doi.org/10.1007/978-94-011-3220-6_2
    [Google Scholar]
  5. Beavington-Penney, S.J., Wright, V.P. & Racey, A.
    2006. The Middle Eocene Seeb Formation of Oman: An investigation of acyclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings. Journal of Sedimentary Research, 76, 1137–1161, https://doi.org/10.2110/jsr.2006.109
    [Google Scholar]
  6. Beavington-Penney, S.J., Nadin, P., Wright, V.P., Clarke, E., McQuilken, J. & Bailey, H.W.
    2008. Reservoir quality variation on an Eocene carbonate ramp, El Garia Formation, offshore Tunisia: Structural control of burial corrosion and dolomitisation. Sedimentary Geology, 209, 42–57, https://doi.org/10.1016/j.sedgeo.2008.06.006
    [Google Scholar]
  7. Blöcher, M.G., Zimmermann, G., Moeck, I., Brandt, W., Hassanzadegan, A. & Magri, F.
    2010. 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir. Geofluids, 10, 406–421, https://doi.org/10.1111/j.1468-8123.2010.00284.x
    [Google Scholar]
  8. Bloemendal, M., Olsthoorn, T. & Boons, F.
    2014. How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage. Energy Policy, 66, 104–114, https://doi.org/10.1016/j.enpol.2013.11.034
    [Google Scholar]
  9. Bridger, D.W. & Allen, D.M.
    2014. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system. Hydrogeology Journal, 22, 233–250, https://doi.org/10.1007/s10040-013-1049-1
    [Google Scholar]
  10. Burgess, P.M.
    2006. The signal and the noise: forward modeling of allocyclic and autocyclic processes influencing peritidal carbonate stacking patterns. Journal of Sedimentary Research, 76, 962–977, https://doi.org/10.2110/jsr.2006.084
    [Google Scholar]
  11. Caljé, R.
    2010. Future use of aquifer thermal energy storage below the historic centre of Amsterdam. MSc thesis, Delft University of Technology, Amsterdam
    [Google Scholar]
  12. Cooper, D.J.W., Ali, M.Y. & Searle, M.P.
    2014. Structure of the northern Oman Mountains from the Semail Ophiolite to the Foreland Basin. In: Rollinson, H.R., Searle, M.P., Abbasi, I.A., Al-Lazki, A. & Al Kindi, M.H. (eds) Tectonic Evolution of the Oman Mountains. Geological Society, London, Special Publications, 392, 129–153, https://doi.org/10.1144/SP392.7
    [Google Scholar]
  13. Dernaika, M.R., Mansour, B., Gonzalez, D., Koronfol, S., Mahgoub, F., Al Jallad, O. & Contreras, M.
    2017. Upscaled permeability and rock types in a heterogeneous carbonate core from the Middle East. SPE Reservoir Characterisation and Simulation Conference and Exhibition, 8–10 May 2017, Abu Dhabi, UAE, https://doi.org/10.2118/185991-MS
    [Google Scholar]
  14. Diersch, H.J.G.
    2014. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media.Springer, Berlin, https://doi.org/10.1007/978-3-642-38739-5
    [Google Scholar]
  15. Diersch, H.J.G., Bauer, D., Heidemann, W., Rühaak, W. & Schätzl, P.
    2011. Finite element modeling of borehole heat exchanger systems. Part 2. Numerical simulation. Computers and Geosciences, 37, 1136–1147, https://doi.org/10.1016/j.cageo.2010.08.002
    [Google Scholar]
  16. Doughty, C., Hellstrom, G., Tsang, C.F. & Claesson, J.
    1982. A dimensionless parameter approach to the thermal behavior of an aquifer thermal energy storage system. Water Resources Research, 18, 571–587, https://doi.org/10.1029/WR018i003p00571
    [Google Scholar]
  17. Ferguson, G.
    2007. Heterogeneity and thermal modeling of ground water. Ground Water, 45, 485–490, https://doi.org/10.1111/j.1745-6584.2007.00323.x
    [Google Scholar]
  18. Fleuchaus, P., Godschalk, B., Stober, I. & Blum, P.
    2018. Worldwide application of aquifer thermal energy storage – A review. Renewable and Sustainable Energy Reviews, 94, 861–876, https://doi.org/10.1016/j.rser.2018.06.057
    [Google Scholar]
  19. Gao, L., Zhao, J., An, Q., Wang, J. & Liu, X.
    2017. A review on system performance studies of aquifer thermal energy storage. Energy Procedia, 142, 3537–3545, https://doi.org/10.1016/j.egypro.2017.12.242
    [Google Scholar]
  20. Gelhar, L.W., Welty, C. & Rehfeldt, K.R.
    1992. A critical review of data on field-scale dispersion in aquifers. Water Resources Research, 28, 1955–1974, https://doi.org/10.1029/92WR00607
    [Google Scholar]
  21. Hoving, J., Bozkaya, B., Zeiler, W., Haan, J.-F., Boxem, G. & van der Velden, J.A.J.
    2014. Thermal storage capacity control of aquifer systems. In: Treeck, C. & Müller, D. van (eds) BauSim 2014, 22–24 September 2014, Aachen, Germany. RWTH, Aachen, Germany, 617–625.
    [Google Scholar]
  22. Jaxa-Rozen, M., Bloemendal, M. & Rostampour, V.
    2017. Smart grids for aquifer thermal energy storage (ATES): a case study for the Amsterdam Zuidas district [Abstract]. In: 19th EGU General Assembly, EGU2017, Proceedings from the Conference held 23–28 April 2017 in Vienna, Austria. European Geosciences Union (EGU), Munich, Germany, 16747.
    [Google Scholar]
  23. Kowalczyk, W. & Havinga, J.
    1991. A case study on the influence of the distance between wells on a doublet well aquifer thermal performance. Paper presented atThermastock ‘91 – 5th International Conference on Thermal Energy Storage, 13–16 May 1991, Scheveningen, The Netherlands.
    [Google Scholar]
  24. Kranz, S. & Bartels, J.
    2010. Simulation and data based optimisation of an operating seasonal aquifer thermal energy storage. In: Proceedings of the World Geothermal Congress 2010, 25–30 April 2010, Bali, Indonesia.
    [Google Scholar]
  25. Kranz, S., Bloecher, G. & Saadat, A.
    2015. Improving aquifer thermal energy storage efficiency. In: Proceedings of the World Geothermal Congress 2015, 19–25 April 2015, Melbourne, Australia.
    [Google Scholar]
  26. Lee, K.S.
    2010. A review on concepts, applications, and models of aquifer thermal energy storage systems. Energies, 3, 1320–1334, https://doi.org/10.3390/en3061320
    [Google Scholar]
  27. Magri, F., Bayer, U., Maiwald, U., Otto, R. & Thomsen, C.
    2009. Impact of transition zones, variable fluid viscosity and anthropogenic activities on coupled fluid-transport processes in a shallow salt-dome environment. Geofluids, 9, 182–194, https://doi.org/10.1111/j.1468-8123.2009.00242.x
    [Google Scholar]
  28. Magri, F., Akar, T., Gemici, U. & Pekdeger, A.
    2010. Deep geothermal groundwater flow in the Seferihisar–Balçova area, Turkey: Results from transient numerical simulations of coupled fluid flow and heat transport processes. Geofluids, 10, 388–405, https://doi.org/10.1111/j.1468-8123.2009.00267.x
    [Google Scholar]
  29. Major, M., Poulsen, S.E. & Balling, N.
    2018. A numerical investigation of combined heat storage and extraction in deep geothermal reservoirs. Geothermal Energy, 6, 1–16, https://doi.org/10.1186/s40517-018-0089-0
    [Google Scholar]
  30. McCartney, J.S., Sánchez, M. & Tomac, I.
    2016. Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management. Computers and Geotechnics, 75, 244–256, https://doi.org/10.1016/j.compgeo.2016.01.002
    [Google Scholar]
  31. Milliotte, C. & Matthäi, S.K.
    2014. From seismic interpretation to reservoir model: An integrated study accounting for the structural complexity of the Vienna Basin using an unstructured reservoir grid. First Break, 32, 95–101.
    [Google Scholar]
  32. Nolan, S.C., Skelton, P.W., Clissold, B.P. & Smewing, J.D.
    1990. Maastrichtian to early Tertiary stratigraphy and palaeogeography of the Central and Northern Oman Mountains. In: Robertson, A.H.F., Searle, M.P. & Ries, A.C. (eds) The Geology and Tectonics of the Oman Region. Geological Society, London, Special Publications, 49, 495–519, https://doi.org/10.1144/GSL.SP.1992.049.01.31
    [Google Scholar]
  33. Nordell, B., Snijders, A. & Stiles, L.
    2015. The use of aquifers as thermal energy storage (TES) systems. In: Cabeza, L.F. (ed.) Advances in Thermal Energy Storage Systems: Methods and Applications. Woodhead Publishing Series in Energy, 66. Woodhead Publishing, Cambridge, 87–115, https://doi.org/10.1533/9781782420965.1.87
    [Google Scholar]
  34. Omri, A.
    2013. CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Economics, 40, 657–664, https://doi.org/10.1016/j.eneco.2013.09.003
    [Google Scholar]
  35. Özcan, E., Abbasi, I.A., Drobne, K., Govindan, A., Jovane, L. & Boukhalfa, K.
    2016. Early Eocene orthophragminids and alveolinids from the Jafnayn Formation, N Oman: Significance of Nemkovella stockari Less & Özcan, 2007 in Tethys. Geodinamica Acta, 28, 160–184, https://doi.org/10.1080/09853111.2015.1107437
    [Google Scholar]
  36. Paksoy, H.O., Andersson, O., Abaci, S., Evliya, H. & Turgut, B.
    2000. Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer. Renewable Energy, 19, 117–122, https://doi.org/10.1016/S0960-1481(99)00060-9
    [Google Scholar]
  37. Parameshwaran, R., Kalaiselvam, S., Harikrishnan, S. & Elayaperumal, A.
    2012. Sustainable thermal energy storage technologies for buildings: A review. Renewable and Sustainable Energy Reviews, 16, 2394–2433, https://doi.org/10.1016/j.rser.2012.01.058
    [Google Scholar]
  38. Pinel, P., Cruickshank, C.A., Beausoleil-Morrison, I. & Wills, A.
    2011. A review of available methods for seasonal storage of solar thermal energy in residential applications. Renewable and Sustainable Energy Reviews, 15, 3341–3359, https://doi.org/10.1016/j.rser.2011.04.013
    [Google Scholar]
  39. Possemiers, M., Huysmans, M. & Batelaan, O.
    2015. Application of multiple-point geostatistics to simulate the effect of small-scale aquifer heterogeneity on the efficiency of aquifer thermal energy storage. Hydrogeology Journal, 23, 971–981, https://doi.org/10.1007/s10040-015-1244-3
    [Google Scholar]
  40. Poulsen, S.E., Balling, N. & Nielsen, S.B.
    2015. A parametric study of the thermal recharge of low enthalpy geothermal reservoirs. Geothermics, 53, 464–478, https://doi.org/10.1016/j.geothermics.2014.08.003
    [Google Scholar]
  41. Racey, A.
    2001. A review of Eocene nummulite accumulations: Structure, formation and reservoir potential. Journal of Petroleum Geology, 24, 79–100, https://doi.org/10.1111/j.1747-5457.2001.tb00662.x
    [Google Scholar]
  42. Ramanathan, R.
    2005. An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa. Energy, 30, 2831–2842, https://doi.org/10.1016/j.energy.2005.01.010.
    [Google Scholar]
  43. Réveillère, A., Hamm, V., Lesueur, H., Cordier, E. & Goblet, P.
    2013. Geothermal contribution to the energy mix of a heating network when using aquifer thermal energy storage: Modeling and application to the Paris Basin. Geothermics, 47, 69–79, https://doi.org/10.1016/j.geothermics.2013.02.005
    [Google Scholar]
  44. Rühaak, W. & Renz, A.
    2010. Numerical modeling of geothermal applications. In: Proceedings of the World Geothermal Congress 2010, 25–30 April 2010, Bali, Indonesia.
    [Google Scholar]
  45. Schout, G., Drijver, B., Gutierrez-Neri, M. & Schotting, R.
    2014. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: A Rayleigh-based method. Hydrogeology Journal, 22, 281–291, https://doi.org/10.1007/s10040-013-1050-8
    [Google Scholar]
  46. Schütz, F., Winterleitner, G. & Huenges, E.
    2018. Geothermal exploration in a sedimentary basin: new continuous temperature data and physical rock properties from northern Oman. Geothermal Energy, 6, 5, https://doi.org/10.1186/s40517-018-0091-6
    [Google Scholar]
  47. Shekhar, R., Sahni, I. et al.
    2014. Modelling and simulation of a Jurassic carbonate ramp outcrop, Amellago, High Atlas Mountains, Morocco. Petroleum Geoscience, 20, 109–123, https://doi.org/10.1144/petgeo2013-010
    [Google Scholar]
  48. Sommer, W., Valstar, J., Van Gaans, P., Grotenhuis, T. & Rijnaarts, H.
    2013. The impact of aquifer heterogeneity on the performance of aquifer thermal energy storage. Water Resources Research, 49, 8128–8138, https://doi.org/10.1002/2013WR013677
    [Google Scholar]
  49. Sommer, W.T., Doornenbal, P.J., Drijver, B.C., van Gaans, P.F.M., Leusbrock, I., Grotenhuis, J.T.C. & Rijnaarts, H.H.M.
    2014. Thermal performance and heat transport in aquifer thermal energy storage. Hydrogeology Journal, 22, 263–279, https://doi.org/10.1007/s10040-013-1066-0
    [Google Scholar]
  50. Sorenson, S.N. & Reffstrup, J.
    1994. Single-well aquifer thermal energy storage (ATES). Design and simulation principles. In: Proceedings of the 6th International Conference on Thermal Energy Storage, Calorstock ‘94, Espoo, Finland. Helsinki University of Technology, Helsinki, 271–278.
    [Google Scholar]
  51. Sweetnam, T., Al-Ghaithi, H. et al.
    2014. Residential Energy Use in Oman: A Scoping Study. Project Report 44. UCL Energy Institute, University College London, London.
    [Google Scholar]
  52. Trefry, M.G. & Muffels, C.
    2007. FEFLOW: A finite-element ground water flow and transport modeling tool. Ground Water, 45, 525–528, https://doi.org/10.1111/j.1745-6584.2007.00358.x
    [Google Scholar]
  53. Vanhoudt, D., Desmedt, J., Van Bael, J., Robeyn, N. & Hoes, H.
    2011. An aquifer thermal storage system in a Belgian hospital: Long-term experimental evaluation of energy and cost savings. Energy and Buildings, 43, 3657–3665, https://doi.org/10.1016/j.enbuild.2011.09.040
    [Google Scholar]
  54. Wenzlaff, C., Schütz, F., Winterleitner, G. & Huenges, E.
    2018. High-temperature mono-well aquifer thermal energy storage (ATES) system in a carbonate dominated horizon [poster]. In: 20th EGU General Assembly, EGU2018, Proceedings from the Conference held 4–13 April 2018, Vienna, Austria. European Geosciences Union (EGU), Munich, Germany, 13903.
    [Google Scholar]
  55. Wilkinson, B.H. & Drummond, C.N.
    2004. Facies mosaics across the Persian Gulf and around Antigua – stochastic and deterministic products of shallow-water sediment accumulation. Journal of Sedimentary Research, 74, 513–526, https://doi.org/10.1306/123103740513
    [Google Scholar]
  56. Wille, D.
    2012. The Combination of Aquifer Thermal Energy Storage (ATES) and Groundwater Remediation. OVAM, Mechelen, Belgium.
    [Google Scholar]
  57. Winterleitner, G., Schütz, F., Wenzlaff, C. & Huenges, E.
    2018. The impact of reservoir heterogeneities on high-temperature aquifer thermal energy storage systems. A case study from Northern Oman. Geothermics, 74, 150–162, https://doi.org/10.1016/j.geothermics.2018.02.005
    [Google Scholar]
  58. Zeghici, R.M., Oude Essink, G.H.P., Hartog, N. & Sommer, W.
    2015. Integrated assessment of variable density–viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage (HT-ATES) system in a geothermal reservoir. Geothermics, 55, 58–68, https://doi.org/10.1016/j.geothermics.2014.12.006
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-104
Loading
/content/journals/10.1144/petgeo2018-104
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error