1887
Volume 25, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2019-086
2019-07-23
2024-04-19
Loading full text...

Full text loading...

References

  1. Albertz, M. & Beaumont, C.
    2010. An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 2. Comparison of observations with geometrically complex numerical models. Tectonics, 29, TC4018, https://doi.org/10.1029/2009TC002540
    [Google Scholar]
  2. Allen, J. & Beaumont, C.
    2012. Impact of inconsistent density scaling on physical analogue models of continental margin scale salt tectonics. Journal of Geophysical Research: Solid Earth, 117, B08103. https://doi.org/10.1029/2012jb009227.
    [Google Scholar]
  3. Baumann, T.S., Kaus, B.J.P. & Eichheimer, P.
    2017. 3D Numerical Modelling of Salt Tectonics.79th EAGE Conference & Exhibition 2017, Paris, France.
    [Google Scholar]
  4. Beaumont, C., Kooi, H. & Willett, S.
    2000. Coupled tectonic-surface process models with applications to rifted margins and collisional orogens. In: Summerfield, M.A. (ed.) Geomorphology and Global Tectonics. John Wiley and Sons Ltd, Hoboken, NJ, 29–55.
    [Google Scholar]
  5. Chemia, Z., Schmeling, H. & Koyi, H.
    2009. The effect of the salt viscosity on future evolution of the Gorleben salt diapir, Germany. Tectonophysics, 473, 446–456, https://doi.org/10.1016/j.tecto.2009.03.027
    [Google Scholar]
  6. Dooley, T.P., Jackson, M.P.A. & Hudec, M.R.
    2015. Breakout of squeezed stocks: dispersal of roof fragments, source of extrusive salt and interaction with regional thrust faults. Basin Research, 27, 3–25, https://doi.org/10.1111/bre.12056
    [Google Scholar]
  7. Fernandez, N. & Kaus, B.J.P.
    2015. Pattern formation in 3-D numerical models of down-built diapirs initiated by a Rayleigh–Taylor instability. Geophysical Journal International, 202, 1253–1270, https://doi.org/10.1093/gji/ggv219
    [Google Scholar]
  8. Fredrich, J.T., Coblentz, D., Fossum, A.F. & Thorne, B.J.
    2003. Stress perturbations adjacent to salt bodies in the deepwater Gulf of Mexico.Society of Petroleum Engineers Annual Technical Conference and Exhibition. 2003. Society of Petroleum Engineers, Denver, Colorado.
    [Google Scholar]
  9. Fuchs, L., Schmeling, H. & Koyi, H.
    2011. Numerical models of salt diapir formation by down-building: the role of sedimentation rate, viscosity contrast, initial amplitude and wavelength. Geophysical Journal International, 186, 390–400, https://doi.org/10.1111/j.1365-246X.2011.05058.x
    [Google Scholar]
  10. Ge, H., Jackson, M.P.A. & Vendeville, B.C.
    1997. Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81, 398–423, https://doi.org/10.1306/522B4361-1727-11D7-8645000102C1865D
    [Google Scholar]
  11. Goteti, R., Ings, S.J. & Beaumont, C.
    2012. Development of salt minibasins initiated by sedimentary topographic relief. Earth and Planetary Science Letters, 339/340, 103–116, https://doi.org/10.1016/j.epsl.2012.04.045
    [Google Scholar]
  12. Goteti, R., Agar, S.M., Brown, J.P., Sibon, H.J. & Zuhlke, R.
    2017. Deformation of Siliciclastic Stringers in a Layered Evaporite Sequence (LES): Insights From Geomechanical Forward Modeling.51st US Rock Mechanics & Geomechanics Symposium, San Francisco, CA. Paper 17-701.
    [Google Scholar]
  13. Gradmann, S., Beaumont, C. & Albertz, M.
    2009. Factors controlling the evolution of the Perdido Fold Belt, northwestern Gulf of Mexico, determined from numerical models. Tectonics, 28, TC2002, https://doi.org/10.1029/2008TC002326
    [Google Scholar]
  14. Koupriantchik, D., Meyers, A.G. & Hunt, S.
    2004. 3D geomechanical modelling towards understanding stress anomalies causing wellbore instability. In: Gulf Rocks 2004, 6th North America Rock Mechanics Symposium (ARMA/NARMS). American Rock Mechanics Association, Houston, TX.
    [Google Scholar]
  15. Letouzey, J., Colletta, B., Vially, R. & Chermette, J.C.
    1995. Evolution of salt-related structures in compressional settings. In: Jackson, M.P.A., Roberts, D.G. & Snelson, S. (eds) Salt tectonics: a global perspective, Vol. 65. AAPG Memoir, Tulsa, OK, 41–60.
    [Google Scholar]
  16. López-Mir, B., Muñoz, J.A. & García-Senz, J.
    2016. 3D geometric reconstruction of Upper Cretaceous passive diapirs and salt withdrawal basins in the Cotiella Basin (southern Pyrenees). Journal of the Geological Society, 173, 616–627, https://doi.org/10.1144/jgs2016-002
    [Google Scholar]
  17. Luo, G., Hudec, M.R., Flemings, P.B. & Nikolinakou, M.A.
    2017. Deformation, stress, and pore pressure in an evolving suprasalt basin. Journal of Geophysical Research: Solid Earth, 122, 5663–5690, https://doi.org/10.1002/2016JB013779
    [Google Scholar]
  18. Nikolinakou, M.A., Heidari, M., Flemings, P.B. & Hudec, M.R.
    2018. Geomechanical modeling of pore pressure in evolving salt systems. Marine and Petroleum Geology, 93, 272–286, https://doi.org/10.1016/j.marpetgeo.2018.03.013
    [Google Scholar]
  19. Obradors-Prats, J., Rouainia, M., Aplin, A.C. & Crook, A.J.L.
    2017. Assessing the implications of tectonic compaction on pore pressure using a coupled geomechanical approach. Marine and Petroleum Geology, 79, 31–43, https://doi.org/10.1016/j.marpetgeo.2016.10.017
    [Google Scholar]
  20. Pichel, L.M., Finch, E., Huuse, M. & Redfern, J.
    2017. The influence of shortening and sedimentation on rejuvenation of salt diapirs: A new Discrete-Element Modelling approach. Journal of Structural Geology, 104, 61–79, https://doi.org/10.1016/j.jsg.2017.09.016
    [Google Scholar]
  21. Rowan, M.G. & Kligfield, R.
    1989. Cross section restoration and balancing as aid to seismic interpretation in extensional terranes. AAPG Bulletin, 73, 955–966.
    [Google Scholar]
  22. Rowan, M.G. & Ratliff, R.A.
    2012. Cross-section restoration of salt-related deformation: Best practices and potential pitfalls. Journal of Structural Geology, 41, 24–37, https://doi.org/10.1016/j.jsg.2011.12.012
    [Google Scholar]
  23. Schultz-Ela, D.D.
    2003. Origin of drag folds bordering salt diapirs. American Association of Petroleum Geologists Bulletin, 87, 757–780, https://doi.org/10.1306/12200201093
    [Google Scholar]
  24. van-der-Zee, W., Ozan, C., Brudy, M. & Holland, M.
    2011. 3D geomechanical modeling of complex salt structures.SIMULIA Customer Conference.
    [Google Scholar]
  25. Vendeville, B.C. & Jackson, M.P.A.
    1992. The rise of diapirs during thin-skinned extension. Marine and Petroleum Geology, 9, 331–354, https://doi.org/10.1016/0264-8172(92)90047-I
    [Google Scholar]
  26. Willett, S., Beaumont, C. & Fullsack, P.
    1993. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology, 21, 371–374, https://doi.org/10.1130/0091-7613(1993)021<0371:MMFTTO>2.3.CO;2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2019-086
Loading
  • Article Type: Introduction

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error