1887
Volume 67, Issue 7
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The normal‐to‐shear weakness ratio is commonly used as a fracture fluid indicator, but it depends not only on the fluid types but also on the fracture intensity and internal architecture. Amplitude variation with offset and azimuth is commonly used to perform the fluid identification and fracture characterization in fractured porous rocks. We demonstrate a direct inversion approach to utilize the observable azimuthal data to estimate the decoupled fluid (fluid/porosity term) and fracture (normal and shear weaknesses) parameters instead of the calculation of normal‐to‐shear weakness ratio to help reduce the uncertainties in fracture characterization and fluid identification of a gas‐saturated porous medium permeated by a single set of parallel vertical fractures. Based on the anisotropic poroelasticity and perturbation theory, we first derive a linearized amplitude versus offset and azimuth approximation using the scattering function to decouple the fluid indicator and fracture parameters. Incorporating Bayes formula and convolution theory, we propose a feasible direct inversion approach in a Bayesian framework to obtain the direct estimations of model parameters, in which Cauchy and Gaussian distribution are used for the information of model parameters and the likelihood function, respectively. We finally use the non‐linear iteratively reweighted least squares to solve the maximum solutions of model parameters. The synthetic examples containing a moderate noise demonstrate the feasibility of the proposed approach, and the real data illustrates the stabilities of estimated fluid indicator and dry fracture parameters in gas‐saturated fractured porous rocks.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12778
2019-04-23
2024-04-18
Loading full text...

Full text loading...

References

  1. AhmadiM., TaleghaniA.D. and SayersC.M.2016. The effects of roughness and offset on fracture compliance ratio. Geophysical Journal International205, 454–463.
    [Google Scholar]
  2. AkiK. and RichardsP.G.2002. Quantitative Seismology, 2nd edn. W. H. Freeman.
  3. Al‐MarzougA.M., NevesF.A., KimJ.J. and NebrijaE.L.2006. P‐wave anisotropy from azimuthal AVO and velocity estimates using 3D seismic data from Saudi Arabia. Geophysics71, E7–E11.
    [Google Scholar]
  4. Al‐ShuhailA.A.2007. Fracture‐porosity inversion from P‐wave AVOA data along 2D seismiclines: an example from the Austin Chalk of southeast Texas. Geophysics72, B1–B7.
    [Google Scholar]
  5. AliA. and JakobsenM.2014Anisotropic permeability in fractured reservoirs from frequency‐dependent seismic amplitude versus angle and azimuth data. Geophysical Prospecting62, 293–314.
    [Google Scholar]
  6. BachrachR., SenguptaM. and SalamaA.2009. Reconstruction of the layer anisotropic elastic parameter and high resolution fracture characterization from P‐wave data: a case study using seismic inversion and Bayesian rock physics parameter estimation. Geophysical Prospecting57, 253–262.
    [Google Scholar]
  7. BakulinA., GrechkaV. and TsvankinI.2000a. Estimation of fracture parameters from reflection seismic data‐Part I: HTI model due to a single fracture set. Geophysics65, 1788–1802.
    [Google Scholar]
  8. BakulinA., GrechkaV. and TsvankinI.2000b. Estimation of fracture parameters from reflection seismic data‐Part II: fractured models with orthorhombic symmetry. Geophysics65, 1803–1817.
    [Google Scholar]
  9. BaroneA. and SenM.K.2018. A new Fourier azimuthal amplitude variation fracture characterization method: case study in the Haynesville Shale. Geophysics83, WA101–WA120.
    [Google Scholar]
  10. BiotM.A.1941. General theory of three‐dimensional consolidation. Journal of Applied Physics12, 155–164.
    [Google Scholar]
  11. ChichininaT., SabininV. and Ronquillo‐JarilloG.2006. QVOA analysis: P‐wave attenuation anisotropy for fracture characterization. Geophysics71, C37–C48.
    [Google Scholar]
  12. CrampinS.1985. Evaluation of anisotropy by shear‐wave splitting. Geophysics50, 142–152.
    [Google Scholar]
  13. DowntonJ.E.2016. Resolving the AVOAz symmetry axis ambiguity. 78th Annual International Conference and Exhibition, EAGE. Extended Abstracts.
  14. DowntonJ.E., and RoureB.2015. Interpreting azimuthal Fourier coefficients for anisotropic and fracture parameters. Interpretation3, ST9–ST27.
    [Google Scholar]
  15. FangX., ZhengY. and FehlerM. C.2017. Fracture clustering effect on amplitude variation with offset and azimuth analyses. Geophysics82, N13–N25.
    [Google Scholar]
  16. FattiJ.L., VailP.J., SmithG.C., StraussP.J. and LevittP.R.1994. Detection of gas in sandstone reservoirs using AVO analysis: a 3‐D seismic case history using the geostack technique. Geophysics59, 1362–1376.
    [Google Scholar]
  17. GalvinR.J., GurevichB. and SayersC.M.2007Fluid‐dependent shear‐wave splitting in a poroelastic medium with conjugate fracture sets. Geophysical Prospecting55, 333–343.
    [Google Scholar]
  18. GassmannF.1951. Über die Elastizität poröser Medien: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1–23.
  19. GoodwayW.N., ChenT. and DowntonJ.1997. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; ‘λ‘, ‘μ’, and ‘λ/μ fluid stack’, from P and S inversions. 67th Annual International Meeting, SEG, Expanded Abstracts, 183–186.
  20. GrayF., ChenT. and GoodwayW.1999. Bridging the gap: using AVO to detect changes in fundamental elastic constants. 69th Annual International Meeting, SEG, Expanded Abstracts, 852–855.
  21. GrayD. and Todorovic‐MarinicD.2004. Fracture detection using 3D azimuthal AVO. CSEG Recorder29, 5–8.
    [Google Scholar]
  22. GrechkaV., TsvankinI. and LaiZ. K.1999. 3‐D moveout inversion in azimuthally anisotropic media with lateral velocity variation; theory and a case study. Geophysics64, 1202–1218.
    [Google Scholar]
  23. GurevichB.2003. Elastic properties of saturated porous rocks with aligned fractures. Journal of Applied Geophysics54, 203–218.
    [Google Scholar]
  24. HanD.H. and BatzleM.L.2004. Gassmann's equation and fluid‐saturation effects on seismic velocities. Geophysics69, 398–405.
    [Google Scholar]
  25. HuangL., StewartR., SilS. and DyaurN.2015. Fluid substitution effects on seismic anisotropy. Journal of Geophysical Research: Solid Earth120, 850–863.
    [Google Scholar]
  26. JílekP.2001. Modeling and inversion of converted‐wave reflection coefficients in anisotropic media: a tool for quantitative AVO analysis, PhD thesis, Colorado School of Mines.
  27. LiX.Y., LiuY.J., LiuE., ShenF., QiL. and ShouliQ.2003. Fracture detection using land 3D seismic data from the Yellow River Delta, China. The Leading Edge22, 680–683.
    [Google Scholar]
  28. LiuE. and MartinezA.2012. Seismic Fracture Characterization. EAGE Publication, The Netherlands.
    [Google Scholar]
  29. MacBethC. and SchuettH.2007. The stress dependent elastic properties of thermally induced microfractures in aeolian Rotliegend sandstone. Geophysical Prospecting55, 323–332.
    [Google Scholar]
  30. MallickS., CraftK.L., MeisterL.J. and ChambersR.E.1998. Determination of the principal directions of azimuthal anisotropy from P‐wave seismic data. Geophysics63, 692–706.
    [Google Scholar]
  31. MavkoG. and BandyopadhyayK.2009. Approximate fluid substitution for vertical velocities in weakly anisotropic VTI rocks. Geophysics74, D1‐D6.
    [Google Scholar]
  32. MavkoG., MukerjiT. and DvorkinJ.2009. The Rock Physics Handbook. Cambridge University Press.
    [Google Scholar]
  33. NelsonR.A.2001. Geologic Analysis of Naturally Fractured Reservoirs. Gulf Publishing Company, Houston, TX.
    [Google Scholar]
  34. PanX. and ZhangG.2018. Model parameterization and PP‐wave amplitude versus angle and azimuth (AVAZ) direct inversion for fracture quasi‐weaknesses in weakly anisotropic elastic media. Surveys in Geophysics39, 937–964.
    [Google Scholar]
  35. PanX. and ZhangG.2019. Fracture detection and fluid identification based on anisotropic Gassmann equation and linear‐slip model. Geophysics84, R99–R112.
    [Google Scholar]
  36. PanX., ZhangG., ChenH. and YinX.2017b. McMC‐based AVAZ direct inversion for fracture weaknesse. Journal of Applied Geophysics138, 50–61.
    [Google Scholar]
  37. PanX., ZhangG., ChenH. and YinX.2017c. McMC‐based nonlinear EIVAZ inversion driven by rock physics. Journal of Geophysics and Engineering14, 368–379.
    [Google Scholar]
  38. PanX., ZhangG., ChenH. and YinX.2018a. Elastic impedance parameterization and inversion for fluid modulus and dry fracture quasi‐weaknesses in a gas‐saturated reservoir. Journal of Natural Gas Science and Engineering49, 194–212.
    [Google Scholar]
  39. PanX., ZhangG., ChenH., ZhangJ. and YinX.2017a. Zoeppritz‐based AVO inversion using an improved Markov chain Monte Carlo method. Petroleum Science14, 75–83.
    [Google Scholar]
  40. PanX., ZhangG. and YinX.2017d. Azimuthally anisotropic elastic impedance inversion for fluid indicator driven by rock physics. Geophysics82, C211–C227.
    [Google Scholar]
  41. PanX., ZhangG. and YinX.2018b. Azimuthal seismic amplitude variation with offset and azimuth inversion in weakly anisotropic media with orthorhombic symmetry. Surveys in Geophysics39, 99–123.
    [Google Scholar]
  42. PšenčikI. and MartinsJ.L.2001. Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media. Studia Geophysica et Geodaetica45, 176–199.
    [Google Scholar]
  43. RügerA.1997. P‐wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics62, 713–722.
    [Google Scholar]
  44. RügerA.1998. Variation of P‐wave reflectivity with offset and azimuth in anisotropic media. Geophysics63, 935–947.
    [Google Scholar]
  45. RussellB., HedlinK., HiltermanF. and LinesL.2003. Fluid‐property discrimination with AVO: a Biot‐Gassmann perspective. Geophysics68, 29–39.
    [Google Scholar]
  46. RussellB.H., GrayD. and HampsonD.P.2011. Linearized AVO and poroelasticity. Geophysics76, C19–C29.
    [Google Scholar]
  47. SayersC.M.1990. Stress‐induced fluid flow anisotropy in fractured rock. Transport in Porous Media5, 287–297.
    [Google Scholar]
  48. SayersC.M.2002. Fluid‐dependent shear‐wave splitting in fractured media. Geophysical Prospecting50, 393–401.
    [Google Scholar]
  49. SayersC.M., TaleghaniA.D. and AdachiJ.2009. The effect of mineralization on the ratio of normal to tangential compliance of fractures. Geophysical Prospecting57, 439–446.
    [Google Scholar]
  50. SchoenbergM. and DoumaJ.1988. Elastic wave propagation in media with parallel fractures and aligned cracks. Geophysical Prospecting36, 571–590.
    [Google Scholar]
  51. SchoenbergM. and SayersC.M.1995. Seismic anisotropy of fractured rock. Geophysics60, 204–211.
    [Google Scholar]
  52. SenM.K.2008Seismic modeling and amplitude versus azimuth in fractured media. 7th International Conference & Exposition Petroleum Geophysics, SEG.
  53. ShawR.K. and SenM.K.2004. Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophysical Journal International158, 225–238.
    [Google Scholar]
  54. ShawR.K. and SenM.K.2006. Use of AVOA data to estimate fluid indicator in a vertically fractured medium. Geophysics71, C15–C24.
    [Google Scholar]
  55. ShueyR.T.1985. A simplification of the Zoeppritz equations. Geophysics50, 609–614.
    [Google Scholar]
  56. SilS., SenM.K. and GurevichB.2011. Analysis of fluid substitution in a porous and fractured medium. Geophysics76, WA157–WA166.
    [Google Scholar]
  57. SmithG.C. and GidlowP.M.1987Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting35, 993–1014.
    [Google Scholar]
  58. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  59. YinX. and ZhangS.2014. Bayesian inversion for effective pore‐fluid bulk modulus based on fluid‐matrix decoupled amplitude variation with offset approximation. Geophysics79, R221–R232.
    [Google Scholar]
  60. ZoeppritzK.1919. Erdbebenwellen VIII B, Über die Reflexion und Durchgang seismischer Wellen durch Unstetigkeitsflächen. Gottinger Nachr1, 66–84.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12778
Loading
/content/journals/10.1111/1365-2478.12778
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error