1887
Volume 67, Issue 7
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Time‐lapse seismic data are generally used to monitor the changes in dynamic reservoir properties such as fluid saturation and pore or effective pressure. Changes in saturation and pressure due to hydrocarbon production usually cause changes in the seismic velocities and as a consequence changes in seismic amplitudes and travel times. This work proposes a new rock physics model to describe the relation between saturation‐pressure changes and seismic changes and a probabilistic workflow to quantify the changes in saturation and pressure from time‐lapse seismic changes. In the first part of this work, we propose a new quadratic approximation of the rock physics model. The novelty of the proposed formulation is that the coefficients of the model parameters (i.e. the saturation‐pressure changes) are functions of the porosity, initial saturation and initial pressure. The improvements in the results of the forward model are shown through some illustrative examples. In the second part of the work, we present a Bayesian inversion approach for saturation‐pressure 4D inversion in which we adopt the new formulation of the rock physics approximation. The inversion results are validated using synthetic pseudo‐logs and a 3D reservoir model for CO sequestration.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12797
2019-05-07
2024-04-25
Loading full text...

Full text loading...

References

  1. AbrielW.2008. Reservoir Geophysics: Applications. Society of Exploration Geophysicists.
  2. AkiK. and RichardsP.1980. Quantitative Seismology. W.H. Freeman.
    [Google Scholar]
  3. ArtsR., EikenO., ChadwickA., ZweigelP., van der MeerL. and ZinsznerB.2004. Monitoring of CO2 injected at Sleipner using time‐lapse seismic data. Energy29, 1383–1392.
    [Google Scholar]
  4. AsterC., BorchersB. and ThurberC.2011. Parameter Estimation and Inverse Problems. Elsevier.
    [Google Scholar]
  5. AvsethP., MukerjiT. and MavkoG.2005. Quantitative Seismic Interpretation. Cambridge University Press.
    [Google Scholar]
  6. AvsethP. and SkjeiN.2011. Rock physics modeling of static and dynamic reservoir properties – a heuristic approach for cemented sandstone reservoirs. The Leading Edge30, 90–96.
    [Google Scholar]
  7. AvsethP., SkjeiN. and MavkoG.2016. Rock‐physics modeling of stress sensitivity and 4D time shifts in patchy cemented sandstones – application to the Visund Field, North Sea. The Leading Edge35, 868–878.
    [Google Scholar]
  8. AvsethP., SkjeiN. and SkålnesÅ.2013. Rock physics modelling of 4D time‐shifts and time‐shift derivatives using well log data – a North Sea demonstration. Geophysical Prospecting61, 380–390.
    [Google Scholar]
  9. AyeniG.2011. Time‐lapse seismic imaging by linearized joint inversion. Ph.D. thesis, Stanford University.
  10. BatzleM. and WangZ.1992. Seismic properties of pore fluids. Geophysics57, 1396–1408.
    [Google Scholar]
  11. BhaktaT. and LandrøM.2014. Estimation of pressure‐saturation changes for unconsolidated reservoir rocks with high VP/VS ratio. Geophysics79, M35–M54.
    [Google Scholar]
  12. BjørlykkeK.2010. Petroleum geoscience: From sedimentary environments to rock physics. Springer Science & Business Media.
  13. BlanchardD. and DelommotP.2015. An example of the measurement and practical applications of time‐lapse seismic attenuation. Geophysics79, WA25–WA34.
    [Google Scholar]
  14. BulandA. and El OuairY.2006. Bayesian time‐lapse inversion. Geophysics71, R43–R48.
    [Google Scholar]
  15. BulandA. and OmreH.2003. Bayesian linearized AVO inversion. Geophysics68, 185–198.
    [Google Scholar]
  16. CalvertR.2005. Insights and Methods for 4D Reservoir Monitoring and Characterization. SEG and European Association of Geoscientists and Engineers.
  17. CarcioneJ., LandrøM., GangiA. and CavalliniF.2007. Determining the dilation factor in 4D monitoring of compacting reservoirs by rock‐physics models. Geophysical Prospecting55, 793–804.
    [Google Scholar]
  18. DadashpourM., LandrøM. and KleppeJ.2008. Nonlinear inversion for estimating reservoir parameters from time‐lapse seismic data. Journal of Geophysical Engineering5, 54–66.
    [Google Scholar]
  19. DongY. and OliverD.2005. Quantitative use of 4D seismic data for reservoir description. SPE Journal10, 91–99.
    [Google Scholar]
  20. DoyenP.2007. Seismic Reservoir Characterization. EAGE.
    [Google Scholar]
  21. DuffautK., AvsethP. and LandrøM.2011. Stress and fluid sensitivity in two North Sea oil fields – comparing rock physics models with seismic observations. The Leading Edge30, 98–102.
    [Google Scholar]
  22. DvorkinJ., GutierrezM. and GranaD.2014. Seismic Reflections of Rock Properties. Cambridge University Press.
    [Google Scholar]
  23. Eberhart‐PhillipsD., HanD.H. and ZobackM.D.1989. Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics51, 82–89.
    [Google Scholar]
  24. EigestadT., DahleK., HellevangB., RiisF., JohansenT. and ØianE.2009. Geological modeling and simulation of CO2 injection in the Johansen formation. Computational Geosciences13, 435.
    [Google Scholar]
  25. EmerickA. and ReynoldsA.2013. Ensemble smoother with multiple data assimilation. Computers & Geosciences55, 3–15.
    [Google Scholar]
  26. EvensenG.2009. Data Assimilation. The Ensemble Kalman filter. Springer.
    [Google Scholar]
  27. GosselinO., AanonsenS., AavatsmarkI., CominelliA., GonardR., KolasinskiM., et al. 2003. History matching using time‐lapse seismic (HUTS). Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO.
  28. GranaD. and MukerjiT.2015. Bayesian inversion of time‐lapse seismic data for the estimation of static reservoir properties and dynamic property changes. Geophysical Prospecting63, 637–655.
    [Google Scholar]
  29. GrudeS., LandrøM. and OsdalB.2013. Time‐lapse pressure–saturation discrimination for CO2 storage at the Snøhvit field. International Journal of Greenhouse Gas Control19, 369–378.
    [Google Scholar]
  30. HaleD.2009. A method for estimating apparent displacement vectors from time‐lapse seismic images. Geophysics74, V99–V107.
    [Google Scholar]
  31. HanD.1986. Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments. Ph.D. thesis, Stanford University.
  32. HofmannR., XuX., BatzleM., PrasadM., FurreA.‐K. and PillitteriA.2005. Effective pressure or what is the effect of pressure?. The Leading Edge24, 1256–1260.
    [Google Scholar]
  33. HuangX., MeisterL. and WorkmanR.1997. Reservoir characterization by integration of time‐lapse seismic and production data. Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX.
  34. LandrøM.2001. Discrimination between pressure and fluid saturation changes from time‐lapse seismic data. Geophysics66, 836–844.
    [Google Scholar]
  35. LandrøM.2015. Chapter 19: 4D seismic, in Bjørlykke, K., Petroleum Geoscience, From Sedimentary Environments to Rock Physics: Springer.
  36. LandrøM., VeireH., DuffautK. and NajjarN.2003. Discrimination between pressure and fluid saturation changes from marine multicomponent time‐lapse seismic data. Geophysics68, 1592–1599.
    [Google Scholar]
  37. LumleyD.2001. Time‐lapse seismic reservoir monitoring. Geophysics66, 50–53.
    [Google Scholar]
  38. LumleyD., LandrøM., VasconcelosI., EisnerL., HatchellP., LiY., et al. 2015. Advances in time‐lapse geophysics – introduction. Geophysics80, WAi–WAii.
    [Google Scholar]
  39. MacBethC.2004. A classification for the pressure‐sensitivity properties of a sandstone rock frame. Geophysics69, 497–510.
    [Google Scholar]
  40. MaharramovM., BiondiB. and MeadowsM.2016. Time‐lapse inverse theory with applications. Geophysics81, R485–R501.
    [Google Scholar]
  41. MavkoG., MukerjiT. and DvorkinJ.2009. The Rock Physics Handbook. Cambridge University Press.
    [Google Scholar]
  42. MeadowsM.2001. Enhancements to Landrø’s method for separating time‐lapse pressure and saturation changes. 71th annual international meeting. SEG, Expanded Abstracts, 1652–1655.
  43. OliverD. and ChenY.2011. Recent progress on reservoir history matching, a review. Computational Geosciences15, 185–221.
    [Google Scholar]
  44. OliverS., ReynoldsA. and LiuN.2008. Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press.
    [Google Scholar]
  45. PazettiB., DonnoD., DavolioA., GranaD. and SchiozerD., 2016. The impact of time‐shift estimation and correction on two 4D attributes‐amplitude difference and velocity change. EAGE, Expanded Abstract.
  46. RøsteT., StovasA. and LandrøM.2006. Estimation of layer thickness and velocity changes using 4D prestack seismic data. Geophysics71, S219–S234.
    [Google Scholar]
  47. SaulM. and LumleyD.2015. The combined effects of pressure and cementation on 4D seismic data. Geophysics80, WA135–WA148.
    [Google Scholar]
  48. SaulM., LumleyD. and ShraggeJ.2013. Modeling the pressure sensitivity of uncemented sediments using a modified grain contact theory: Incorporating grain relaxation and porosity effects. Geophysics78, D327–D338.
    [Google Scholar]
  49. SayersC.2006. Sensitivity of time‐lapse seismic to reservoir stress path. Geophysical Prospecting54, 369–380.
    [Google Scholar]
  50. StoltR. and WegleinA.1985. Migration and inversion of seismic data. Geophysics50, 2458–2472.
    [Google Scholar]
  51. TarantolaA.2005. Inverse Problem Theory. SIAM.
    [Google Scholar]
  52. ThoreP. and BlanchardT.2015. 4D propagated layer‐based inversion. Geophysics80, R15–R29.
    [Google Scholar]
  53. ThoreP. and HubansC.2012. 4D seismic‐to‐well tying, a key step towards 4D inversion. Geophysics77, R227–R238.
    [Google Scholar]
  54. TraniM., ArtsR., LeeuwenburghO. and BrouwerJ.2011. Estimation of changes in saturation and pressure from 4D seismic and AVO time shift analysis. Geophysics76, C1–C17.
    [Google Scholar]
  55. VedantiN. and SenM.2009. Seismic inversion tracks in situ combustion: a case study from Balol oil field, India. Geophysics74, B103–B112.
    [Google Scholar]
  56. VeireH., BorgosH. and LandrøM.2006. Stochastic inversion of pressure and saturation changes from time‐lapse AVO data. Geophysics71, C81–C92.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12797
Loading
/content/journals/10.1111/1365-2478.12797
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Inversion; Monitoring; Reservoir geophysics; Rock physics; Time lapse

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error