1887

Abstract

Summary

In this study, we focus on fault damage zones in carbonate rocks. We analyse fracture damage from small-scale outcrops to map-scale analyses, using scanlines adjacent to fault cores ( Figure 1a, b ) far from fault tip zones, and aerial images. This enabled the detailed characterisation of 12 faults, on which we define the Displacement-Thickness relationship. We analyse the resulting scaling laws and discuss their properties with respect to the map scale observations and previous models proposed in the literature. Finally, we propose new explanations based on fault segmentation and linkage and discuss their application to NFR.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201902342
2019-09-08
2024-03-28
Loading full text...

Full text loading...

References

  1. Agosta, F., Prasad, M., Aydin, A.
    , 2007. Physical properties of carbonate fault rocks, fucino basin (Central Italy): implications for fault seal in platform carbonates. Geofluids7, 19–32. https://doi.org/10.1111/j.1468-8123.2006.00158.x
    [Google Scholar]
  2. Ballas, G., Fossen, H., Soliva, R.
    , 2015. Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs. Journal of Structural Geology76, 1–21. https://doi.org/10.1016/jjsg.2015.03.013
    [Google Scholar]
  3. Ballas, G., Soliva, R., Benedicto, A., Sizun, J.-P.
    , 2014. Control of tectonic setting and large-scale faults on the basin-scale distribution of deformation bands in porous sandstone (Provence, France). Marine and Petroleum Geology55, 142–159. https://doi.org/10.1016/j.marpetgeo.2013.12.020
    [Google Scholar]
  4. Balsamo, F., Clemenzi, L., Storti, F., Mozafari, M., Solum, J., Swennen, R., Taberner, C., Tueckmantel, C.
    , 2016. Anatomy and paleofluid evolution of laterally restricted extensional fault zones in the Jabal Qusaybah anticline, Salakh arch, Oman. Geological Society of America Bulletin128, 957–972. https://doi.org/10.1130/B31317.1
    [Google Scholar]
  5. Beach, A., Welbon, A.I., Brockbank, P.J., McCallum, J.E.
    , 1999. Reservoir damage around faults; outcrop examples from the Suez Rift. Petroleum Geoscience5, 109–116. https://doi.org/10.1144/petgeo.5.2.109
    [Google Scholar]
  6. Berg, S.S., Skar, T.
    , 2005. Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah. Journal of Structural Geology27, 1803–1822. https://doi.org/10.1016/j.jsg.2005.04.012
    [Google Scholar]
  7. Billi, A., Salvini, F., Storti, F.
    , 2003. The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. Journal of Structural Geology25, 1779–1794. https://doi.org/10.1016/S0191-8141(03)00037-3
    [Google Scholar]
  8. Caine, J.S., Evans, J.P., Forster, C.B.
    , 1996. Fault zone architecture and permeability structure. Geology24, 1025–1028.
    [Google Scholar]
  9. Chester, F.M., Logan, J.M.
    , 1986. Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure and Applied Geophysics124, 79–106.
    [Google Scholar]
  10. Cowie, P.A., Shipton, Z.K.
    , 1998. Fault tip displacement gradients and process zone dimensions. Journal of Structural Geology20, 983–997. https://doi.org/0191-8141/98
    [Google Scholar]
  11. de Joussineau, G., Aydin, A.
    , 2007. The evolution of the damage zone with fault growth in sandstone and its multiscale characteristics. Journal of Geophysical Research112. https://doi.org/10.1029/2006JB004711
    [Google Scholar]
  12. Evans, J.P.
    , 1990. Thickness-displacement relationships for fault zones. Journal of Structural Geology12, 1061–1065. https://doi.org/10.1016/0191-8141(90)90101-4
    [Google Scholar]
  13. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J., Withjack, M.O.
    , 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology32, 1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009
    [Google Scholar]
  14. Faulkner, D.R., Mitchell, T.M., Healy, D., Heap, M.J.
    , 2006. Slip on “weak” faults by the rotation of regional stress in the fracture damage zone. Nature444, 922–925. https://doi.org/10.1038/nature05353
    [Google Scholar]
  15. Faulkner, D.R., Mitchell, T.M., Jensen, E., Cembrano, J.
    , 2011. Scaling of fault damage zones with displacement and the implications for fault growth processes. Journal of Geophysical Research116. https://doi.org/10.1029/2010JB007788
    [Google Scholar]
  16. Kim, Y.-S., Peacock, D.C.P., Sanderson, D.J.
    , 2004. Fault damage zones. Journal of Structural Geology26, 503–517. https://doi.org/10.1016/j.jsg.2003.08.002
    [Google Scholar]
  17. Knott, S.D., Beach, A., Brockbank, P.J., Brown, J.L., McCallum, J.E., Welbon, A.I.
    , 1996. Spatial and mechanical controls on normal fault populations. Journal of Structural Geology18, 359372.
    [Google Scholar]
  18. Mayolle, S., Soliva, R., Caniven, Y., Wibberley, C., Ballas, G., Milesi, G., Dominguez, S.
    , 2019. Scaling of fault damage zones in carbonate rocks. Journal of Structural Geology124, 35–50. https://doi.org/10.1016/j.jsg.2019.03.007
    [Google Scholar]
  19. Micarelli, L., Benedicto, A., Wibberley, C.A.J.
    , 2006. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology28, 1214–1227. https://doi.org/10.1016/j.jsg.2006.03.036
    [Google Scholar]
  20. Mitchell, T.M., Faulkner, D.R.
    , 2012. Towards quantifying the matrix permeability of fault damage zones in low porosity rocks. Earth and Planetary Science Letters339–340, 24–31. https://doi.org/10.1016/j.epsl.2012.05.014
    [Google Scholar]
  21. , 2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology31, 802–816. https://doi.org/10.1016/j.jsg.2009.05.002
    [Google Scholar]
  22. Peacock, D.C.P.
    , 2001. The temporal relationship between joints and faults. Journal of Structural Geology23, 329–341.
    [Google Scholar]
  23. Peacock, D.C.P., Dimmen, V., Rotevatn, A., Sanderson, D.J.
    , 2017. A broader classification of damage zones. Journal of Structural Geology102, 179–192. https://doi.org/10.1016/j.jsg.2017.08.004
    [Google Scholar]
  24. Savage, H.M., Brodsky, E.E.
    , 2011. Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. Journal of Geophysical Research116, 1–14. https://doi.org/10.1029/2010JB007665
    [Google Scholar]
  25. Shipton, Z.K., Cowie, P.A.
    , 2003. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone. Journal of Structural Geology25, 333–344.
    [Google Scholar]
  26. , 2001. Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo sandstone, Utah. Journal of Structural Geology23, 1825–1844.
    [Google Scholar]
  27. Sibson, R.H.
    , 2000. Fluid involvement in normal faulting. Journal of Geodynamics29, 469–499.
    [Google Scholar]
  28. Soliva, R., Benedicto, A., Maerten, L.
    , 2006. Spacing and linkage of confined normal faults: Importance of mechanical thickness. Journal of Geophysical Research111. https://doi.org/10.1029/2004JB003507
    [Google Scholar]
  29. Torabi, A., Berg, S.S.
    , 2011. Scaling of fault attributes: A review. Marine and Petroleum Geology28, 1444–1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201902342
Loading
/content/papers/10.3997/2214-4609.201902342
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error