1887
Volume 31, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Grain size trends in basin stratigraphy are thought to preserve a rich record of the climatic and tectonic controls on landscape evolution. Stratigraphic models assume that over geological timescales, the downstream profile of sediment deposition is in dynamic equilibrium with the spatial distribution of tectonic subsidence in the basin, sea level and the flux and calibre of sediment supplied from mountain catchments. Here, we demonstrate that this approach in modelling stratigraphic responses to environmental change is missing a key ingredient: the dynamic geomorphology of the sediment routing system. For three large alluvial fans in the Iglesia basin, Argentine Andes we measured the grain size of modern river sediment from fan apex to toe and characterise the spatial distribution of differential subsidence for each fan by constructing a 3D model of basin stratigraphy from seismic data. We find, using a self‐similar grain size fining model, that the profile of grain size fining on all three fans cannot be reproduced given the subsidence profile measured and for any sediment supply scenario. However, by adapting the self‐similar model, we demonstrate that the grain size trends on each fan can be effectively reproduced when sediment is not only sourced from a single catchment at the apex of the system, but also laterally, from tributary catchments and through fan surface recycling. Without constraint on the dynamic geomorphology of these large alluvial systems, signals of tectonic and climate forcing in grain size data are masked and would be indecipherable in the geological record. This has significant implications for our ability to make sensitive, quantitative reconstructions of external boundary conditions from the sedimentary record.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12349
2019-03-07
2024-03-28
Loading full text...

Full text loading...

References

  1. Allen, P. A. (2008). From landscapes into geological history. Nature, 451, 274–276. https://doi.org/10.1038/nature06586
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment (3rd ed.). Chichester, UK: Wiley.
    [Google Scholar]
  3. Allen, P. A., Armitage, J. J., Carter, A., Duller, R. A., Michael, N. A., Sinclair, H. D., … Whittaker, A. C. (2013). The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60, 102–130.
    [Google Scholar]
  4. Allen, P. A., & Densmore, A. L. (2000). Sediment flux from an uplifting fault block. Basin Research, 12, 367–380. https://doi.org/10.1046/j.1365-2117.2000.00135.x
    [Google Scholar]
  5. Allen, P. A., & Heller, P. L. (2012). Dispersal and preservation of tectonically generated alluvial gravels in sedimentary basins. In C.Busby, & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 111–130). Oxford, UK: Blackwell Publishing Ltd.
    [Google Scholar]
  6. Allen, P. A., Michael, N. A., D'Arcy, M., Roda‐Boluda, D. C., Whittaker, A. C., Duller, R. A., & Armitage, J. J. (2017). Fractionation of grain size in terrestrial sediment routing systems. Basin Research, 29, 180–202. https://doi.org/10.1111/bre.12172
    [Google Scholar]
  7. Allmendinger, R. W., Figueroa, D., Snyder, D., Beer, J., Mpodozis, C., & Isacks, B. L. (1990). Foreland shortening and crustal balancing in the Andes at 30‐degrees‐S latitude. Tectonics, 9, 789–809.
    [Google Scholar]
  8. Alvarez‐Marron, J., Rodriguez‐Fernandez, R., Heredia, N., Busquets, P., Colombo, F., & Brown, D. (2006). Neogene structures overprinting palaeozoic thrust systems in the Andean Precordillera at 30 degrees S latitude. Journal of the Geological Society, 163, 949–964.
    [Google Scholar]
  9. Amante, C., & Eakins, B. W.(2009) Etopo1 1 arc‐minute global relief model: Procedures, data sources and analysis. N. T. M. N. NGDC‐24. National Geophysical Data Center, NOAA.
  10. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4, 231–235. https://doi.org/10.1038/ngeo1087
    [Google Scholar]
  11. Attal, M., & Lavé, J. (2006). Changes of bedload characteristics along the Marsyandi river (central Nepal): Implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts. Tectonics, Climate, and Landscape Evolution, 398, 143–171.
    [Google Scholar]
  12. Attal, M., & Lavé, J. (2009). Pebble abrasion during fluvial transport: experimental results and implications for the evolution of the sediment load along rivers. Journal of Geophysical Research‐Earth, Surface, 114. https://doi.org/10.1029/2009JF001328
    [Google Scholar]
  13. Attal, M., Lave, J., & Masson, J. P. (2006). New facility to study river abrasion processes. Journal of Hydraulic Engineering‐Asce, 132, 624–628. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:6(624)
    [Google Scholar]
  14. Attal, M., Mudd, S. M., Hurst, M. D., Weinman, B., Yoo, K., & Naylor, M. (2015). Impact of change in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the feather river basin (Sierra Nevada, California). Earth Surface Dynamics, 3, 201–222. https://doi.org/10.5194/esurf-3-201-2015
    [Google Scholar]
  15. Beer, J. A., Allmendinger, R. W., Figueroa, D. E., & Jordan, T. E. (1990). Seismic stratigraphy of a Neogene Piggyback Basin, Argentina. AAPG Bulletin, 74, 1183–1202.
    [Google Scholar]
  16. Bookhagen, B., & Strecker, M. R. (2012). Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern central Andes. Earth and Planetary Science Letters, 327, 97–110. https://doi.org/10.1016/j.epsl.2012.02.005
    [Google Scholar]
  17. Buffington, J. M., & Montgomery, D. R. (1997). A systematic analysis of eight decades of incipient motion studies, with special reference to gravel‐bedded rivers. Water Resources Research, 33, 1993–2029. https://doi.org/10.1029/96WR03190
    [Google Scholar]
  18. Bunte, K., & Abt, S. R. (2001) Sampling surface and subsurface particle‐size distributions in wadable gravel‐and cobble‐bed streams for analysis in sediment transport, hydraulics and stream bed monitoring, gen. tech rep. Rms‐Gtr‐74, United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, 428.
  19. Carretier, S., Tolorza, V., Rodriguez, M. P., Pepin, E., Aguilar, G., Regard, V., … Guyot, J. L. (2015). Erosion in the Chilean Andes between 27 degrees S and 39 degrees S: Tectonic, climatic and geomorphic control. Geodynamic Processes in the Andes of Central Chile and Argentina, 399, 401–418.
    [Google Scholar]
  20. Church, M., & Kellerhals, R. (1978). Statistics of grain‐size variation along a Gravel river. Canadian Journal of Earth Sciences, 15, 1151–1160.
    [Google Scholar]
  21. Colombo, F., Busquets, P., Ramos, E., Vergés, J., & Ragona, D. (2000). Quaternary alluvial terraces in an active tectonic region: the San Juan River Valley Andean Ranges, San Juan Province, Argentina. Journal of South American Earth Sciences, 13, 611–626. https://doi.org/10.1016/S0895-9811(00)00050-X
    [Google Scholar]
  22. Colombo, F., Busquets, P., Sole de Porta, N., Limarino, C., Heredia, N., Rodriguez-Fernandez, L., & Alvarez-Marron, J. (2009). Holocene intramontane lake development: A new model in the Jáchal River Valley, Andean Precordillera, San Juan, Argentina. Journal of South American Earth Sciences, 28, 229–238. https://doi.org/10.1016/j.jsames.2009.03.002
    [Google Scholar]
  23. Constantine, C. R., Mount, M. F., & Florsheim, J. L. (2003). The effects of longitudinal differences in Gravel mobility on the downstream fining pattern in the Cosumnes River, California. Journal of Geology, 111, 233–241. https://doi.org/10.1086/345844
    [Google Scholar]
  24. Covault, J. A., Craddock, W. H., Romans, B. W., Fildani, A., & Gosai, M. (2013). Spatial and temporal variations in landscape evolution: Historic and longer‐term sediment flux through global catchments. Journal of Geology, 121, 35–56. https://doi.org/10.1086/668680
    [Google Scholar]
  25. D'Arcy, M., Whittaker, A. C., & Roda‐Boluda, D. C. (2017). Measuring alluvial fan sensitivity to past climate changes using a self‐similarity approach to grain‐size fining, Death Valley, California. Sedimentology, 64, 388–424. https://doi.org/10.1111/sed.12308
    [Google Scholar]
  26. Dingle, E. H., Sinclair, H. D., Attal, M., Milodowski, D. T., & Singh, V. (2016). Subsidence control on river morphology and grain size in the Ganga Plain. American Journal of Science, 316, 778–812. https://doi.org/10.2475/08.2016.03
    [Google Scholar]
  27. Duller, R. A., Whittaker, A. C., Fedele, J. J., Whitchurch, A. L., Springett, J., Smithells, R., … Allen, P. A. (2010). From grain size to tectonics. Journal of Geophysical Research‐Earth Surface, 115, F03022. https://doi.org/10.1029/2009JF001495
    [Google Scholar]
  28. Fedele, J. J., & Paola, C. (2007). Similarity solutions for fluvial sediment fining by selective deposition. Journal of Geophysical Research‐Earth Surface, 112, F02038. https://doi.org/10.1029/2005JF000409
    [Google Scholar]
  29. Ferguson, R. I., Cudden, J. R., Hoey, T. B., & Rice, S. P. (2006). River system discontinuities due to lateral inputs generic styles and controls. Earth Surface Processes and Landforms, 31, 1149–1166. https://doi.org/10.1002/esp.1309
    [Google Scholar]
  30. Fernández‐Seveso, F. (1993). Sismoestratigrafia De La Cuenca iglesia: Informe de actividades en la Universidad De Cornell. Informe Interne, 10(408), 20.
    [Google Scholar]
  31. Forzoni, A., Storms, J. E. A., Whittaker, A. C., & de Jager, G. (2014). Delayed delivery from the sediment factory: Modeling the impact of catchment response time to tectonics on sediment flux and fluvio‐deltaic stratigraphy. Earth Surface Processes and Landforms, 39, 689–704. https://doi.org/10.1002/esp.3538
    [Google Scholar]
  32. Foster, M. A., Anderson, R. S., Gray, H. J., & Mahan, S. A. (2017). Dating of river terraces along Lefthand Creek, Western High Plains, Colorado, reveals punctuated incision. Geomorphology, 295, 176–190. https://doi.org/10.1016/j.geomorph.2017.04.044
    [Google Scholar]
  33. Gomez, B., Rosser, B. J., Peacock, D. H., Hicks, D. M., & Palmer, J. A. (2001). Downstream fining in a rapidly Aggrading gravel bed river. Water Resources Research, 37, 1813–1823. https://doi.org/10.1029/2001WR900007
    [Google Scholar]
  34. Harries, R. M., Kirstein, L., Whittaker, A., Attal, M., Peralta, S., & Brooke, S. (2018). Evidence for self‐similar bedload transport on andean alluvial fans, Iglesia Basin, South Central Argentina. Journal of Geophysical Research: Earth Surface, 123, 2292–2315.
    [Google Scholar]
  35. Heller, P. L., & Paola, C. (1992). The large‐scale dynamics of grain‐size variation in alluvial basins, 2: Application to syntectonic conglomerate. Basin Research, 4(2), 91–102. https://doi.org/10.1111/j.1365-2117.1992.tb00146.x.
    [Google Scholar]
  36. Hirano, M. (1971). River bed degradation with armouring. Proceedings of the Japanese Society of Civil Engineering, 195, 55–65.
  37. Hoey, T. B., & Bluck, B. J. (1999). Identifying the controls over downstream fining of river gravels. Journal of Sedimentary Research, 69, 40–50. https://doi.org/10.2110/jsr.69.40
    [Google Scholar]
  38. Hoey, T. B., & Ferguson, R. I. (1997). Controls of strength and rate of downstream fining above a river base level. Water Resources Research, 33, 2601–2608. https://doi.org/10.1029/97WR02324
    [Google Scholar]
  39. Hovius, N., & Leeder, M. (1998). Clastic sediment supply to basins. Basin Research, 10, 1–5.
    [Google Scholar]
  40. Humphrey, N. F., & Heller, P. L. (1995). Natural oscillations in coupled geomorphic systems ‐ An alternative origin for cyclic sedimentation. Geology, 23, 499–502. https://doi.org/10.1130/0091-7613(1995)023<0499:NOICGS>2.3.CO;2
    [Google Scholar]
  41. Iriondo, M., & García, N. (1993). Climatic variations in the Argentine plains during the last 18, 000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 101, 209–220.
    [Google Scholar]
  42. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37, L19401. https://doi.org/10.1029/2010GL044638
    [Google Scholar]
  43. Jordan, T., Fernandez, A., Fernandez‐Seveso, F., Ré, G., & Milana, J. P. (1997). Relaciones Entre Las Historias Evolutivas De Las Cuencas De Iglesia Y Bermejo, Prov. De San Juan, Argentina. Actas de las segundas jornadas sobre geologia de Precordillera, 142–147.
  44. Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795. https://doi.org/10.1080/01621459.1995.10476572
    [Google Scholar]
  45. Kellerhals, R., & Bray, D. I. (1971). Improved method for size distribution of stream bed gravel. Water Resources Research, 7, 1045.
    [Google Scholar]
  46. Knighton, A. D. (1980). Longitudinal changes in size and sorting of stream‐bed material in 4 english rivers. Geological Society of America Bulletin, 91, 55–62.
    [Google Scholar]
  47. Lamb, M. P., Dietrich, W. E., & Venditti, J. G. (2008). Is the critical shields stress for incipient sediment motion dependent on channel‐bed slope?Journal of Geophysical Research‐Earth Surface, 113, F02008. https://doi.org/10.1029/2007JF000831
    [Google Scholar]
  48. Lee, M., & Wagenmakers, E. J. (2014). Bayesian cognitive modeling: A practical course. New York, NY: Cambridge University Press.
    [Google Scholar]
  49. Malatesta, L. C., Avouac, J.‐P., Brown, N. D., Breitenbach, S. F. M., Pan, J., Chevalier, M.‐L., … Blard, P.‐H. (2018). Lag and mixing during sediment transfer across the Tian Shan piedmont caused by climate‐driven aggradation? Incision cycles basin research early view. Basin Research, 30, 613–635.
    [Google Scholar]
  50. Malatesta, L. C., Prancevic, J. P., & Avouac, J.‐P. (2017). autogenic entrenchment patterns and terraces due to coupling with lateral erosion in incising alluvial channels. Journal of Geophysical Research: Earth Surface, 122, 335–355. https://doi.org/10.1002/2015JF003797
    [Google Scholar]
  51. Mason, C. C., & Romans, B. W. (2018). Climate‐driven unsteady denudation and sediment flux in a high‐relief unglaciated catchment‐fan using 26al and 10be: Panamint Valley, California. Earth and Planetary Science Letters, 492, 130–143.
    [Google Scholar]
  52. McPhillips, D., Bierman, P. R., Crocker, T., & Rood, D. H. (2013). Landscape response to pleistocene‐holocene precipitation change in the Western Cordillera, Peru: Be‐10 concentrations in modern sediments and terrace fills. Journal of Geophysical Research‐Earth Surface, 118, 2488–2499.
    [Google Scholar]
  53. Meyer‐Peter, E., & Muller, R. (1948) Formulas for bed‐load transport. Proceedings of the 2nd IAHR Meeting, Int. Assoc. of Hydraulic. Eng. and Res. Madrid, 39–64.
  54. Michael, N. A., Whittaker, A. C., & Allen, P. A. (2013). The functioning of sediment routing systems using a mass balance approach: Example from the eocene of the southern Pyrenees. Journal of Geology, 121, 581–606. https://doi.org/10.1086/673176
    [Google Scholar]
  55. Mueller, E. R., Pitlick, J., & Nelson, J. M. (2005). Variation in the reference shields stress for bed load transport in gravel‐bed streams and rivers. Water Resources Research, 41(4), W04006. https://doi.org/10.1029/2004WR003692
    [Google Scholar]
  56. Nichols, K. K., Bierman, P. R., Caffee, M., Finkel, R., & Larsen, J. (2005). Cosmogenically enabled sediment budgeting. Geology, 33, 133–136. https://doi.org/10.1130/G21006.1
    [Google Scholar]
  57. North, F. K. (1985). Petroleum geology, 1st edn, Winchester, UK: Allen and Unwin Inc., p. 418.
    [Google Scholar]
  58. Paola, C., & Martin, J. M. (2012). Mass‐balance effects in depositional systems. Journal of Sedimentary Research, 82, 435–450. https://doi.org/10.2110/jsr.2012.38
    [Google Scholar]
  59. Paola, C., Parker, G., Seal, R., Sinha, S. K., Southard, J. B., & Wilcock, P. R. (1992). Downstream fining by selective deposition in a laboratory flume. Science, 258, 1757–1760. https://doi.org/10.1126/science.258.5089.1757
    [Google Scholar]
  60. Paola, C., & Seal, R. (1995). Grain‐size patchiness as a cause of selective deposition and downstream fining. Water Resources Research, 31, 1395–1407. https://doi.org/10.1029/94WR02975
    [Google Scholar]
  61. Parker, G. (1978). Self‐formed straight rivers with equilibrium banks and mobile bed. 2. Gravel river. Journal of Fluid Mechanics, 89, 127–146.
    [Google Scholar]
  62. Parker, G. (1991). Selective sorting and abrasion of river gravel. 2. Applications. Journal of Hydraulic Engineering, 117, 150–171.
    [Google Scholar]
  63. Parsons, A. J., Michael, N. A., Whittaker, A. C., Duller, R. A., & Allen, P. A. (2012). Grain‐size trends reveal the late orogenic tectonic and erosional history of the South‐Central Pyrenees, Spain. Journal of the Geological Society, 169, 111–114. https://doi.org/10.1144/0016-76492011-087
    [Google Scholar]
  64. Pelletier, J. D., Murray, A. B., Pierce, J. L., Bierman, P. R., Breshears, D. D., Crosby, B. T., … Yager, E. M. (2015). Forecasting the response of earth's surface to future climatic and land use changes: A review of methods and research needs. Earths Future, 3, 220–251. https://doi.org/10.1002/2014EF000290
    [Google Scholar]
  65. Perucca, L. P., & Martos, L. M. (2012). Geomorphology, tectonism and quaternary landscape evolution of the Central Andes of San Juan (30 degrees S‐69 degrees W), Argentina. Quaternary International, 253, 80–90.
    [Google Scholar]
  66. Pizzuto, J. E. (1995). Downstream fining in a network of gravel‐bedded rivers. Water Resources Research, 31, 753–759. https://doi.org/10.1029/94WR02532
    [Google Scholar]
  67. Re, G. H., Jordan, T. E., & Kelley, S. (2003). Cronologia y paleogeografia del teriario de la cuenca intermontana de iglesia septentrional, Andes De San Juan, Argentina. Revista De La Asociación Geológica Argentina, 58, 31–48.
    [Google Scholar]
  68. Rice, S. (1998). Which tributaries disrupt downstream fining along gravel‐bed rivers?Geomorphology, 22, 39–56.
    [Google Scholar]
  69. Rice, S. (1999). The nature and controls on downstream fining within sedimentary links. Journal of Sedimentary Research, 69, 32–39. https://doi.org/10.2110/jsr.69.32
    [Google Scholar]
  70. Rice, S., & Church, M. (1996). Sampling surficial fluvial gravels: The precision of size distribution percentile estimates. Journal of Sedimentary Research, 66, 654–665.
    [Google Scholar]
  71. Rice, S., & Church, M. (1998). Grain size along two gravel‐bed rivers: Statistical variation, spatial pattern and sedimentary links. Earth Surface Processes and Landforms, 23, 345–363. https://doi.org/10.1002/(SICI)1096-9837(199804)23:4<345:AID-ESP850>3.0.CO;2-B
    [Google Scholar]
  72. Robinson, R. A. J., & Slingerland, R. L. (1998). Grain‐size trends, basin subsidence and sediment supply in the campanian castlegate sandstone and equivalent conglomerates of Central Utah. Basin Research, 10, 109–127. https://doi.org/10.1046/j.1365-2117.1998.00062.x
    [Google Scholar]
  73. Roda‐Boluda, D. C., & Whittaker, A. C. (2018). Normal fault evolution and coupled landscape response: Examples from the southern Apennines, Italy. Basin Research, 30, 186–209. https://doi.org/10.1111/bre.12215
    [Google Scholar]
  74. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  75. Ruskin, B. G. (2006).Sequence stratigraphy and paleopedology of nonmarine Foreland basins: Iglesia basin, Argentina and Axhandle basin, Utah, Cornell University, NY.
  76. Ruskin, B. G., & Jordan, T. E. (2007). Climate change across continental sequence boundaries: Paleopedology and lithofacies of Iglesia Basin, Northwestern Argentina. Journal of Sedimentary Research, 77, 661–679. https://doi.org/10.2110/jsr.2007.069
    [Google Scholar]
  77. Seal, R., Paola, C., Parker, G., Southard, J. B., & Wilcock, P. R. (1997). Experiments on downstream fining of gravel. 1. Narrow‐channel runs. Journal of Hydraulic Engineering, 123, 874–884.
    [Google Scholar]
  78. Shields, A. (1936).Awendung der aehnlichkeitsmechanik und der turbulenzforschung auf die geschiebebewegung. MItt. Preuss. Versuchsanst. Wasserbau Schiffau, 26.
  79. Siame, L. L., Bourles, D. L., Sebrier, M., Bellier, O., Castano, J. C., Araujo, M., … Yiou, F. (1997). Cosmogenic dating ranging from 20 to 700 ka of a series of alluvial fan surfaces affected by the El Tigre fault, Argentina. Geology, 25, 975–978. https://doi.org/10.1130/0091-7613(1997)025<0975:CDRFTK>2.3.CO;2
    [Google Scholar]
  80. Singer, M. B. (2008). Downstream patterns of bed material grain size in a large, lowland alluvial river subject to low sediment supply. Water Resources Research, 44(12), W12202. httsp://doi.org/10.1029/2008WR007183
    [Google Scholar]
  81. Snyder, D. B. (1988). Foreland crustal geometries in the Andes of Argentina and the Zagros of Iran from seismic reflection and gravity data. Phd Thesis, Cornell University, Ithaca, NY.
  82. Suriano, J., Limarino, C. O., Tedesco, A. M., & Alonso, M. S. (2015). Sedimentation model of piggyback basins: Cenozoic examples of San Juan Precordillera, Argentina. Geodynamic Processes in the Andes of Central Chile and Argentina, 399, 221–244. https://doi.org/10.1144/SP399.17
    [Google Scholar]
  83. Syvitski, J. P. M., & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. Journal of Geology, 115, 1–19. https://doi.org/10.1086/509246
    [Google Scholar]
  84. Val, P., Hoke, G. D., Fosdick, J. C., & Wittmann, H. (2016). Reconciling tectonic shortening, sedimentation and spatial patterns of erosion from 10Be paleo‐erosion rates in the Argentine precordillera. Earth and Planetary Science Letters, 450, 173–185.
    [Google Scholar]
  85. von Blanckenburg, F. (2006). The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment (Vol 237, Pg 462, 2005). Earth and Planetary Science Letters, 242, 223–239.
    [Google Scholar]
  86. Waters, J. V., Jones, S. J., & Armstrong, H. A. (2010). Climatic controls on late Pleistocene alluvial fans, Cyprus. Geomorphology, 115, 228–251. https://doi.org/10.1016/j.geomorph.2009.09.002
    [Google Scholar]
  87. Whittaker, A. C., Attal, M., & Allenn, P. A. (2010). Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. Basin Research, 22, 809–828.
    [Google Scholar]
  88. Whittaker, A. C., Duller, R. A., Springett, J., Smithells, R. A., Whitchurch, A. L., & Allen, P. A. (2011). Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply. Geological Society of America Bulletin, 123, 1363–1382. https://doi.org/10.1130/B30351.1
    [Google Scholar]
  89. Wilcock, P. R., & Kenworthy, S. T. (2002). A two‐fraction model for the transport of sand/gravel mixtures. Water Resources Research, 38, 12.
    [Google Scholar]
  90. Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, J. L., Filizola, N., & Kubik, P. W. (2011). Sediment production and delivery in the Amazon river basin quantified by in situ‐produced cosmogenic nuclides and recent river loads. Geological Society of America Bulletin, 123, 934–950. https://doi.org/10.1130/B30317.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12349
Loading
/content/journals/10.1111/bre.12349
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): basin subsidence; grain size; modelling; sediment flux; sedimentology; tectonics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error