1887
Volume 67 Number 9
  • E-ISSN: 1365-2478
PDF

Abstract

ABSTRACT

Seismic anisotropy is a unique observational tool for remotely studying deformation and stress within the Earth. Effects of anisotropy can be seen in seismic data; they are due to mineral alignment, fractures or layering. Seismic anisotropy is linked to local stress and strain, allowing modern geophysics to derive geomechanical properties from seismic data for supporting well planning and fracking. For unravelling anisotropic properties of the crust, the teleseismic receiver functions methodology has started to be widely applied recently due to its ability in retrieving the three‐dimensional characteristics of the media sampled by the waves. The applicability of this technique is tested here by a field test carried out around the Kontinental Tiefbohrung site in southeastern Germany. We compare our results to previous investigations of the metamorphic rock pile of the Zone Erbendorf‐Vohenstrauss, drilled down to 9 km depth, which sampled an alternating sequence of paragneiss and amphibolite, in which a strong foliation has been produced by ductile deformation. The application of the receiver functions reveals the presence of two distinct anisotropic layers within the metamorphic rock pile at 0–4 km and below 6 km depth, with up to 8% anisotropy; the depth of these two layers corresponds to the location of mica‐rich paragneiss which show intense foliation, and finally proves the relation between the signal in the receiver functions, rock texture and presence of cracks. We have now the capability of providing insights from passive seismic data on geomechanical properties of the rocks, useful for geological exploration and engineering purposes, which will help influencing expensive drilling decisions thanks to future application of this seismic technique.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12883
2019-10-14
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/gpr/67/9/gpr12883.html?itemId=/content/journals/10.1111/1365-2478.12883&mimeType=html&fmt=ahah

References

  1. AlexandrovK.S. and RhyzovaT.J.1961. Elastic properties of the rock‐forming minerals: layered silicates. Bull. Acad. Sci. U.S.S.R. Geophys. Ser.9, 1165–1168.
    [Google Scholar]
  2. AlmqvistB.S.G. and MainpriceD.2017. Seismic properties and anisotropy of the continental crust: predictions based on mineral texture and rock microstructure. Reviews of Geophysics55, 367–433.
    [Google Scholar]
  3. AmmonC.J.1991. The isolation of receiver effects from teleseismic P waveforms. Bulletin of the Seismological Society of America81, 2504–2510.
    [Google Scholar]
  4. AmmonC.J., RandallG.E. and ZandtG.1990. On the non‐uniqueness of receiver function inversions. Journal of Geophysical Research95, 15303–15318.
    [Google Scholar]
  5. AndersonD.L., MinsterB. and ColeN.1974. The effect of oriented cracks on seismic velocities. Journal of Geophysical Research79, 4011–4015.
    [Google Scholar]
  6. AsakaM.2018. Anisotropic AVO: implications for reservoir characterization. The Leading Edge37, 916–923.
    [Google Scholar]
  7. AudetP.2015. Layered crustal anisotropy around the San Andreas Fault near Parkfield, California. Journal of Geophysical Research‐Solid Earth120, 3527–3543.
    [Google Scholar]
  8. BabuškaV. and CaraM.1991. Seismic Anisotropy in the Earth. London, UK: Kluwer Academic Publishers.
    [Google Scholar]
  9. BarruolG. and MainpriceD.1993. 3‐D seismic velocities calculated from lattice‐preferred orientation and reflectivity of a lower crustal section: examples of the Val Sesia section (Ivrea zone, northern Italy). Geophysical Journal International115, 1169–1188.
    [Google Scholar]
  10. BerckhemerH., RauenA., WinterH., KernH., KontnyA., LienertM.et al. 1997. Petrophysical properties of the 9‐km‐deep crustal section at KTB. Journal of Geophysical Research102, 18337–18361.
    [Google Scholar]
  11. BianchiI., AnselmiM., ApolonerM.T., QorbaniE., GribovskiK. and Bokelmann, G.2015a. The installation campaign of 9 seismic stations around the KTB site to test anisotropy detection by the receiver function technique. Advances in Geosciences41, 11–23.
    [Google Scholar]
  12. BianchiI. and BokelmannG.2018. Imaging the Variscan suture at the KTB deep drilling site, Germany. Geophysical Journal International213, 2138–2146.
    [Google Scholar]
  13. BianchiI., BokelmannG. and ShiomiK.2015b. Crustal anisotropy across northern Japan from receiver functions. Journal of Geophysical Research: Solid Earth120, 4998–5012.
    [Google Scholar]
  14. BianchiI., LucenteF.P., Di BonaM., GovoniA. and Piana AgostinettiN.2016. Crustal structure and deformation across a mature slab tear zone: the case of southern Tyrrhenian Subduction (Italy). Geophysical Research Letters43, 12380–12388.
    [Google Scholar]
  15. BianchiI., ParkJ., Piana AgostinettiN. and LevinV.2010. Mapping seismic anisotropy using harmonic decomposition of Receiver Functions: an application to Northern Apennines, Italy. Journal of Geophysical Research, 115, B12317.
    [Google Scholar]
  16. BianchiI., Piana AgostinettiN., De GoriP. and ChiarabbaC.2008. Deep structure of the Colli Albani Volcanic District (central Italy) from Receiver Function analysis. Journal of Geophysical Research113, B09313.
    [Google Scholar]
  17. BokelmannG.H.R.1995. P‐wave array polarization analysis and effective anisotropy of the brittle crust. Geophysical Journal International120, 145–162.
    [Google Scholar]
  18. BoppM.1992. Shear‐wave splitting observed by wide‐angle measurement. KTB Report 92–5, pp. 297–308.
  19. BostockM.G. and ChristensenN.I.2012. Split from slip and schist: crustal anisotropy beneath northern Cascadia from non‐volcanic tremor. Journal of Geophysical Research117, B08303.
    [Google Scholar]
  20. BrudyM., ZobackM.D., FuchsF., RummelF. and BaumgärtnerJ.1997. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: implications for crustal strength. Journal of Geophysical Research102, 18453–18457.
    [Google Scholar]
  21. ChristensenN.I.1965. Measurements of dynamic properties of rock at elevated temperatures and pressures. In: Measurements of Rock Properties at Elevated Pressures and Temperatures (eds H.J.Pincus and E.R.Hoskins), pp. 93–107. West Conshohocken, PA: ASTM International.
    [Google Scholar]
  22. ChristensenN.I. and MooneyW.D.1995. Seismic velocity structure and composition of the continental crust: a global review. Journal of Geophysical Research100, 9761–9788.
    [Google Scholar]
  23. DEKORP and Orogenic processes Working Groups . 1999. Exhumation of subducted crust— the Saxonian granulites from reflection seismic experiment GRANU’ 95. Tectonics18, 756–773.
    [Google Scholar]
  24. DEKORP Research Group . 1987. Near‐vertical and wide‐angle seismic surveys in the Black Forest, SW Germany. Journal of Geophysical62, 1–30.
    [Google Scholar]
  25. DEKORP Research Group . 1988. Results of the DEKORP 4/KTB Oberpfalz deep seismic reflection investigations. Journal of Geophysical62, 69–101.
    [Google Scholar]
  26. DuysterJ., KontnyA., de WallH. and ZulaufG.1995. Postvariszische Krustenstapelung am Westrand der Böhmischen Masse. Geowissenschaften134, 135–141.
    [Google Scholar]
  27. EckhardtC. and RabbelW.2011. P‐receiver functions of anisotropic continental crust: a hierarchic catalogue of crustal models and azimuthal waveform patterns. Geophysical Journal International, 187, 439–479.
    [Google Scholar]
  28. EisbacherG.‐H., LueschenE. and WickertF.1989. Crustal‐scale thrusting and extension in the Hercynian Schwarzwald and Vosges, Central Europe. Tectonics8, 1–21.
    [Google Scholar]
  29. EmmermannR.1989. The KTB pilot hole: tectonic setting, technical data and first results. In: The German Continental Deep Drilling Program(KTB): Site‐selection Studies in the Oberpfalz and Schwarzwald (eds R.Emmermann and J.Wohlenberg), pp. 527–553. Berlin–Heidelberg, Germany: Springer.
    [Google Scholar]
  30. EmmermannR. and LauterjungJ.1997. The German Continental Deep Drilling Program KTB: Overview and major results. J. Geophys. Res.102, 18179–18201, https://doi.org/10.1029/96JB03945.
    [Google Scholar]
  31. FrederiksenA.W. and BostockM.G.2000. Modelling teleseismic waves in dipping anisotropic structures. Geophysical Journal International141, 401–412.
    [Google Scholar]
  32. GirardinN. and FarraV.1998. Azimuthal anisotropy in the upper mantle from observation of P‐to‐S converted phases: application to southeast Australia. Geophysical Journal International133, 615–629.
    [Google Scholar]
  33. HaakV. and JonesA.1997. Introduction to special section: the KTB deep drill hole. Journal of Geophysical Research102, 175–177.
    [Google Scholar]
  34. HarjesH.P., BramK., DürbaumH.‐J., GebrandeH., HirschmannG., JanikM., et al. 1997. Origin and nature of crustal reflections: results from integrated seismic measurements at the KTB superdeep drilling site. Journal of Geophysical Research102, 18267–18288.
    [Google Scholar]
  35. HirschmannG.1996. KTB—the structure of a Variscan terrane boundary: seismic investigation—drilling—models. Tectonophysics264, 327–339.
    [Google Scholar]
  36. HirschmannG. and LappM.1995. Evaluation of the structural geology of the KTB Hauptbohrung (KTB‐Oberpfalz HB)KTB Report 94‐1, pp. 285–308. Hannover, Germany: Niedersächsisches Landesamt für Bodenforsch.
  37. HluchyP., KörbeM. and ThomasR.1992. Preliminary interpretation of the 3D‐seismics survey at the KTB locationKTB Report 92‐5, pp. 31–52. Hannover, Germany: Niedersächsisches Landesamt für Bodenforsch.
  38. KernH., PoppT. and SchmidtR.1994. The effect of a deviatoric stress on physical rock properties. Surveys in Geophysics15, 467.
    [Google Scholar]
  39. KernH. and SchmidtR.1990. Physical properties of KTB core samples at simulated in‐situ conditions. Scientific Drilling1, 217–223.
    [Google Scholar]
  40. KernH., SchmidtR. and PoppT.1991. The velocity and density structure of the 4000 m crustal segment at the KTB drilling site and their relationship to lithological and microstructural characteristics of the rocks: an experimental approach. Scientific Drilling2, 130–145.
    [Google Scholar]
  41. LangstonC.A.1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research84, 4749–4762.
    [Google Scholar]
  42. LevinV. and ParkJ.1998. P‐SH conversions in layered media with hexagonally symmetric anisotropy: a cookbook. Pure and Applied Geophysics151, 669–697.
    [Google Scholar]
  43. LicciardiA., EkenT., TaymazT., AgostinettiN.P. and Yolsal‐ÇevikbilenS.2018. Seismic anisotropy in central North Anatolian Fault Zone and its implications on crustal deformation. Physics of the Earth and Planetary Interiors277, 99–112.
    [Google Scholar]
  44. LloydG.E., ButlerR.W., CaseyM. and MainpriceD.2009. Mica, deformation fabrics and the seismic properties of the continental crust. Earth and Planetary Science Letters288, 320–328.
    [Google Scholar]
  45. LüschenE., BramK., SöllnerW. and SobolevS.1996. Nature of seismic reflections and velocities from VSP‐experiments and borehole measurements at the KTB deep drilling site in southeast Germany. Tectonophysics264, 309–326.
    [Google Scholar]
  46. LüschenE., SoellnerW., HohrathA. and RabbelW.1991. Integrated P‐ and S‐wave borehole experiments at the KTB deep drilling site in the Oberpfalz area (SE Germany). Continental Lithosphere: Deep Seismic Reflections, Vol. 22 (eds R.Meissner, L.Brown, H.‐J.Dürbaum, W.Franke, K.Fuchs and F.Seifert), pp. 121–133. Washington, DC: AGU.
    [Google Scholar]
  47. MastinL.G., HeinemannB., KrammerA., FuchsK. and ZobackM.D.1991. Stress orientation in the KTB pilot hole determined from wellbore breakouts. Scientific Drilling2, 1–12.
    [Google Scholar]
  48. MullerJ., JanikM. and HarjesH.‐P.1999. The use of wave‐field directivity for velocity estimation: moving source profiling (MSP) experiments at KTB. Pure and Applied Geophysics156, 303–318.
    [Google Scholar]
  49. O'BrienP.J., DuysterJ., GrauertB., SchreyerW., StoeckhertW. and WeberK.1997. Crustal evolution of the KTB drill site: from old‐est relics to the late Hercynian granites. Journal of Geophysical Research‐Solid Earth102, 18203–18220.
    [Google Scholar]
  50. OkayaD., ChristensenN.I., RossZ. and WuF.2016. Terrane‐controlled crustal shear wave splitting in Taiwan. Geophysical Research Letters43, 556–563.
    [Google Scholar]
  51. OkayaD., RabbelW., BeileckeT. and HasencleverJ.2004. P wave material anisotropy of tectono‐metaorphic terrane: an active source seismic experiment at the KTB super‐deep drill hole, southeast Germany. Geophysical Research Letters31, L24620.
    [Google Scholar]
  52. OkayaD., VelS.S., SongW.J. and JohnsonS.E.2019. Modification of crustal seismic anisotropy by geological structures (“structural geometric anisotropy”). Geosphere15, 146–170.
    [Google Scholar]
  53. OzacarA. and ZandtG.2004. Crustal seismic anisotropy in central Tibet: implications for deformational style and flow in the crust. Geophysical Research Letters31, L23601.
    [Google Scholar]
  54. ParkJ. and LevinV.2000. Receiver functions from multiple‐taper spectral correlation estimates. Bulletin of the Seismological Society of America90, 1507–1520.
    [Google Scholar]
  55. Piana AgostinettiN., BianchiI., AmatoA. and ChiarabbaC.2011. Fluid migration in continental subduction. Earth and Planetary Science Letters302, 267–278.
    [Google Scholar]
  56. Piana AgostinettiN. and MalinvernoA.2010. Receiver function inversion by trans‐dimensional Monte Carlo sampling. Geophysical Journal International181, 858–872.
    [Google Scholar]
  57. PlenefischT. and BonjerK.P.1997. The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters. Tectonophysics275, 7–97.
    [Google Scholar]
  58. PostmaG.W.1955. Wave propagation in a stratified medium. Geophysicists20, 780–806.
    [Google Scholar]
  59. RabbelW.1994. Seismic anisotropy at the continental deep drilling site (Germany). Tectonophysics232, 329–341, https://doi.org/10.1016/0040-1951(94)90094-9.
    [Google Scholar]
  60. RabbelW., BeileckeT., BohlenT., FischerD., FrankA., HasencleverJ., et al. 2004. Superdeep vertical seismic profiling at the KTB deep drill hole (Germany): seismic close‐up view of a major thrust zone down to 8.5 km depth. Journal of Geophysical Research109, B09309.
    [Google Scholar]
  61. RöhrC., KohlJ., HackerW., KeyssnerS., MüllerH., SigmundJ., StrohA. and ZulaufG.1990. German Continental Deep Drilling Program (KTB)—Geological survey of the pilot hole KTB Oberpfalz VB. In: KTB REPORT 90‐8 (eds R.Emmermann, H.-G.Dietrich, J.Lauterjung and Th.Wöhrl), pp. B1–B55. Hannover.
    [Google Scholar]
  62. RügerA.2001. Reflection Coefficients and Azimuthal AVO Analysis in Anisotropic Media, Vol. 10. Tulsa, OK: Society of Exploration Geophysicists.
    [Google Scholar]
  63. SambridgeM.1999. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space, Geophysical Journal International138, 479–494.
    [Google Scholar]
  64. SavageM.K.1998. Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand. Journal of Geophysical Research103, 15069–15087.
    [Google Scholar]
  65. SavageM.K., WesselA., TeanbyN.A. and HurstA.W.2010. Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mt. Ruapehu volcano, New Zealand. Journal of Geophysical Research115, B12321.
    [Google Scholar]
  66. Schulte‐PelkumV. and MahanK.H.2014. A method for mapping crustal deformation and anisotropy with receiver functions and first results from US Array. Earth and Planetary Science Letters402, 221–233.
    [Google Scholar]
  67. Schulte‐PelkumV., MonsalveG., SheehanA., PandeyM.R., SapkotaS., BilhamR., et al. 2005. Imaging the Indian subcontinent beneath the Himalaya. Nature435, 1222.
    [Google Scholar]
  68. SherringtonH.F., ZandtG. and FrederiksenA.2004. Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters. Journal of Geophysical Research109, B02312.
    [Google Scholar]
  69. SiegesmundS., VollbrechtA., ChlupacT., NoverG., DürrastH., MüllerJ., et al. 1993. Fabric‐controlled anisotropy of petrophysical properties observed in KTB core samples. Scientific Drilling4, 31–54.
    [Google Scholar]
  70. StrohA., HansmannJ., HeinschildH.J., HomannK.D., TapferM., WittenbeckerM., et al. 1990. Drill hole KTB Oberpfalz VB, Geoscientific investigations in the KTB‐field laboratory, depth interval 0–4000.1 m, Geochemistry/mineralogy. KTB‐Report, 90–8, C1–C37.
  71. TsvankinI., GaiserJ., GrechkaV., van der BaanM. and ThomsenL.2010. Seismic anisotropy in exploration and reservoir characterization: an overview. Geophysics75, 75A15–75A29.
    [Google Scholar]
  72. ZangA., LienertM., ZinkeJ. and BerckhemerH.1996. Residual strain, wave speed and crack analysis of crystalline cores from the KTB‐VB well. Tectonophysics263, 219–234.
    [Google Scholar]
  73. ZobackM.D., ApelR., BaumgärtnerJ., BurdyM., EmmermannR., EngeserB., et al. 1993. Upper‐crustal strength inferred from stress measurements to 6 km depth in the KTB borehole. Nature365, 633–635.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12883
Loading
/content/journals/10.1111/1365-2478.12883
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Anisotropy; Passive method; Shear wave velocity

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error