1887
Volume 28, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Paleothermal indicators based on clay mineral and organic matter analyses, were integrated with mudrock geochemistry and stratigraphic data to define the sedimentary evolution of the southwestern Thrace Basin during the Eocene to Oligocene. This multi‐method approach allowed us to reconstruct the burial evolution of the basin in Eocene and Oligocene times and to study the mudrock composition and relate this to their provenance and source area weathering. The studied mudrocks show similar chemical variations. The distribution of some major and trace elements for the studied samples reflect heterogeneous source areas containing both felsic to mafic rocks. In particular, the Light Rare Earth Elements/Transition elements (LREEs/TEs) ratios are very high for the Avdira and Organi samples (on the average between 1.5 and 2.2 for (La + Ce)/Cr and 3.5–8 for (La + Ce)/Ni), suggesting a felsic source(s), and very low for the Samothraki, Limnos, Paterma and Iasmos samples (on the average between 0.4 and 0.6 for (La + Ce)/Cr and 0.6–1 for (La + Ce)/Ni), suggesting a mainly basic source(s). The mineralogical composition coupled with the A‐CN‐K and A‐N‐K plots suggest a complex evolution. The clay mineral data (illite percentage in I/S and the stacking order and the Kübler Index) coupled to vitrinite reflectance analysis indicate a high to intermediate diagenetic grade for the Middle to Upper Eocene samples (from Iasmos, Gratini, Organi, Paterma, Esimi and Samotraki sections) and a low diagenetic grade for the Upper Eocene to Oligocene samples (from Limnos and Avdira sections). These data helped in interpreting the geodynamic evolution of the studied basins where the magmatic activity plays an important role. In particular, Middle to Upper Eocene sediments show high to intermediate diagenetic grade since they are located in a portion of the basin dominated by Eocene to Oligocene magmatic activity and intrusion of granitoids, whereas, the Upper Eocene to Oligocene sediments are not involved in important magmatic activity and intrusion of granitoids and, thus, show low diagenetic grade. Furthermore, Middle to Upper Eocene sediments experienced deeper burial processes caused by lithostatic load, rather than the uppermost Eocene and Oligocene sediments, in relation of their position along the stratigraphic succession. These data suggest a burial depth of at least 3–4 km with a tectonic exhumation mainly related to the extensional phases of the Miocene age.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12112
2015-02-02
2024-04-27
Loading full text...

Full text loading...

References

  1. Aldega, L., Corrado, S., Grasso, M. & Maniscalco, R. (2007) Correlation of diagenetic data from organic and inorganic studies in the Apenninic‐Maghrebian fold‐and‐thrust belt: a case study from eastern Sicily. J. Geol., 115, 335–353.
    [Google Scholar]
  2. Aldega, L., Corrado, S., Di Paolo, L., Somma, R., Maniscalco, R. & Balestrieri, M.L. (2011) Shallow burial and exhumation of the Peloritani Mts. (NE Sicily, Italy): insight from paleo‐thermal and structural indicators. GSA Bull., 123, 132–149.
    [Google Scholar]
  3. Árkai, P. (2002) Phyllosilicates in very low‐grade metamorphism: transformation to micas. In: Micas: Crystal Chemistry and Metamorphic Petrology (Ed. by MottanaA. , SassiF.P. , ThomsonJ.B. & Guggenheim.S ) Reviews in Mineralogy and Geochemistry, 46, 463–478. Mineralogical Society of America.
    [Google Scholar]
  4. Barker, C.E. & Pawlewicz, M.J. (1994) Calculation of vitrinite reflectance from thermal histories and peak temperatures: a comparison of methods. In: Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations (Ed. by MukhopadhyayP.K. & DowW.G. ) ACS Symp. Ser., 570, 216–229.
    [Google Scholar]
  5. Barr, S.R., Temperley, S. & Tarney, J. (1999) Lateral growth of the continental crust through deep level subduction‐accretion: a re‐evaluation of central Greek Rhodope. Lithos, 46, 69–94.
    [Google Scholar]
  6. Bonev, N. & Beccaletto, L. (2007) From syn‐ to post‐orogenic Tertiary extension in the north Aegean region: constraints on the kinematics in the eastern Rhodope‐Thrace, Bulgaria‐Greece and the Biga peninsula. In: The Geodynamics of the Aegean and Anatolia (Ed. by TaymazT. , YilmazY. & DilekY. ) Geol. Soc. Lond. Spec. Publ., 291, 113–142.
    [Google Scholar]
  7. Bonev, N.G. & Stampfli, G.M. (2003) New structural and petrologic data on Mesozoic schists in the Rhodope (Bulgaria): geodynamic implications. C.R. Geosci., 335, 691–699.
    [Google Scholar]
  8. Bonev, N., Spikings, R., Moritz, R. & Marchev, P. (2010) The effect of early Alpine thrusting in late‐stage extensional tectonics: evidence from the Kuilidzhik nappe and the Pelevun extensional allochton in the Rhodope Massif, Bulgaria. Tectonophysics, 48, 256–281.
    [Google Scholar]
  9. Borrego, A.G., Araujo, C.V., Balke, A., Cardott, B., Cook, A.C., David, P., Flores, D., Hàmor‐Vidò, M., Hiltma, N.N., Kalkreuth, W., Koch, J., Kommeren, C.J., Kusc, J., Ligouis, B., Marques, M., Mendonc Afil Ho, J.G., Misz, M., Oliveira, L., Pickel, W., Reimer, K., Ranasinghe, P., Suàrez‐Ruiz, I. & Vieth, A. (2006) Influence of particle and surface quality on the vitrinite reflectance of dispersed organic matter: comparative exercise using data from the qualifying system for reflectance analysis working group of ICCP. Int. J. Coal Geol., 68, 151–170.
    [Google Scholar]
  10. Burchfiel, C.B., Nakov, R., Tzankov, T. & Royden, L.H. (2000) Cenozoic extension in Bulgaria and northern Greece: the northern part of the Aegean extensional regime. In: Tectonics and Magmatism in Turkey and Surrounding Area (Ed. by BozkurtE. , WinchesterJ.A. & PiperJ.D.A. ) Geol. Soc. London. Spec. Publ., 173, 325–352.
    [Google Scholar]
  11. Bustin, R.M., Barnes, M.A. & Barnes, W.C. (1990) Determining levels of organic diagenesis in sediments and fossil fuels. In: Diagenesis (Ed. by I.A.McIleareath & D.W.Morrow ), pp. 205–226. Geol. Assoc. Can., St. John's.
    [Google Scholar]
  12. Caracciolo, L., Critelli, S., Innocenti, F., Kolios, N. & Manetti, P. (2011a) Unravelling provenance from Eocene‐Oligocene sandstones of the Thrace Basin, North‐east Greece. Sedimentology, 58, 1988–2011.
    [Google Scholar]
  13. Caracciolo, L., Le Pera, E., Muto, F. & Perri, F. (2011b) Sandstone petrology and mudstone geochemistry of the Peruc‐Korycany Formation (Bohemian Cretaceous Basin, Czech Republic). Int. Geol. Rev., 53, 1003–1031.
    [Google Scholar]
  14. Caracciolo, L., Von Eynatten, H., Tolosana‐Delgado, R., Critelli, S., Manetti, P. & Marchev, P. (2012) Petrological, geochemical, and statistical analysis of eocene‐oligocene sandstones of the western Thrace basin, Greece and Bulgaria. J. Sediment. Res., 82, 482–498.
    [Google Scholar]
  15. Caracciolo, L., Critelli, S., Innocenti, F., Kolios, N. & Manetti, P. (2013a) Unravelling provenance from Eocene‐Oligocene sandstones of the Thrace Basin, North‐east Greece: discussion and Reply. Sedimentology, 60, 865–869.
    [Google Scholar]
  16. Caracciolo, L., Gramigna, P., Critelli, S., Calzona, A.B. & Russo, F. (2013b) Petrostratigraphic analysis of a Late Miocene mixed siliciclastic‐carbonate depositional system (Calabria, Southern Italy): implications for Mediterranean paleogeography. Sed. Geol., 284, 117–132.
    [Google Scholar]
  17. Carlini, M., Artoni, A., Aldega, L., Balestrieri, M.L., Corrado, S., Vescovi, P., Bernini, M. & Torelli, L. (2013) Exhumation and reshaping of far‐travelled/allochthonous tectonic units in mountain belts. New insights for the relationships between shortening and coeval extension in the western Northern Apennines (Italy). Tectonophysics, 608, 267–287.
    [Google Scholar]
  18. Carrigan, C., Mukasa, S., Haydoutov, I. & Kolcheva, K. (2003) Ion microprobe U‐Pb zircon ages of pre‐Alpine rocks in the Balkan, Sredna Gora, and Rhodope terranes of Bulgaria: constraints on Neoproterozoic and Variscan tectonic evolution. J. Czech Geol. Soc., 48, 32–33.
    [Google Scholar]
  19. Cavalcante, F., Fiore, S., Lettino, A., Piccarreta, G. & Tateo, F. (2007) Illite‐Smectite mixed layer in Sicilide shales and piggy‐back deposits of the Gorgoglione Formation (Southern Apennines): geological inferences. Boll. Soc. Geol. It., 103, 241–254.
    [Google Scholar]
  20. Cavalcante, F., Belviso, C., Laurita, S. & Prosser, G. (2012) P‐T constraints from phyllosilicates of the Liguride Complex of the Pollino area (Southern Apennines, Italy): geological inferences. Ofioliti, 37, 65–75.
    [Google Scholar]
  21. Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M. & Ziegler, A. (2004) The TRANSMED Atlas, the Mediterranean Region From Crust to Mantle. Springer, Berlin, 141 pp.
    [Google Scholar]
  22. Cavazza, W., Caracciolo, L., Critelli, S., D'atri, A. & Zuffa, G.G. (2013) Petrostratigraphic evolution of the Thrace Basin (Bulgaria, Greece, Turkey) within the context of Eocene‐Oligocene post‐collisional evolution of the Vardar‐İzmir‐Ankara suture zone. Geodin. Acta, 26, 12–26.
    [Google Scholar]
  23. Christofides, G., Pecskay, Z., Eleftheriadis, G., Soldatos, T. & Koroneos, A. (2004) The Tertiary Evros volcanic rocks (Thrace, Northeastern Greece): petrology and K/Ar geochronology. Geol. Carpath., 55, 397–409.
    [Google Scholar]
  24. Corrado, S., Invernizzi, C., Aldega, L., D'errico, M., Di Leo, P., Mazzoli, S. & Zattin, M. (2010) Testing the validity of organic and inorganic thermal indicators in different tectonic settings from continental subduction to collision: the case history of the Calabria‐Lucania border (southern Apennines, Italy). J. Geol. Soc., 167, 985–999.
    [Google Scholar]
  25. Cox, R., Lowe, D.R. & Cullers, R.L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in southwestern United States. Geochim. Cosmochim. Acta, 59, 2919–2940.
    [Google Scholar]
  26. Critelli, S., Le Pera, E., Galluzzo, F., Milli, S., Moscatelli, M., Perrotta, S. & Santantonio, M. (2007) Interpreting siliciclastic‐carbonate detrital modes in Foreland Basin Systems: an example from Upper Miocene arenites of the Central Apennines, Italy. In: Sedimentary Provenance: Petrographic and Geochemical Perspectives (Ed. by ArribasJ. , CritelliS. & JohnssonM. ) Geol. Soc. Am. Spec. Pap., 420, 107–133.
    [Google Scholar]
  27. Critelli, S., Mongelli, G., Perri, F., Martìn‐Algarra, A., Martìn‐Martìn, M., Perrone, V., Dominici, R., Sonnino, M. & Zaghloul, M.N. (2008) Compositional and geochemical signatures for the sedimentary evolution of the Middle Triassic‐Lower Jurassic continental redbeds from Western‐Central Mediterranean Alpine Chains. J. Geol., 116, 375–386.
    [Google Scholar]
  28. Critelli, S., Muto, F., Tripodi, V. & Perri, F. (2013) Link between thrust tectonics and sedimentation processes of stratigraphic sequences from the southern Apennines foreland basin system, Italy. Rend. Online Soc. Geol. Ital., 25, 21–42.
    [Google Scholar]
  29. Cullers, R.L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian‐Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51, 181–203.
    [Google Scholar]
  30. Cullers, R.L., Barrett, T., Carlson, R. & Robinson, B. (1987) Rare‐earth element and mineralogic changes in Holocene soil and stream sediment: a case study in the West Mountains, Colorado, U.S.A. Chem. Geol., 70, 335–348.
    [Google Scholar]
  31. Dow, W.G. (1977) Kerogen studies and geological interpretation. J. Geochem. Explor., 7, 79–99.
    [Google Scholar]
  32. Durand, B. (1980) Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In: Kerogen: Insoluble Organic Matter from Sedimentary Rock (Ed. by B.Durand ), pp. 13–34. Edit. Technip, Paris.
    [Google Scholar]
  33. Eberl, D.D., Środoń, J., Lee, M., Nadeau, P.H. & Northropo, H.R. (1987) Sericite from the Silverton caldera: correlation among structure, composition, origin, and particle thickness. Am. Mineral., 72, 914–934.
    [Google Scholar]
  34. Eslinger, E. & Pevear, D. (1988) Clay minerals for petroleum geologists and engineers. Short Course No. 22, SEPM, Society for Sedimentary Geology, Tulsa, USA.
  35. García, D., Fonteilles, M. & Moutte, J. (1994) Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. J. Geol., 102, 411–422.
    [Google Scholar]
  36. Georgiev, N., Pleuger, J., Froitzheim, N., Sarov, S., Jahn‐Awe, S. & Nagel, T.J. (2010) Separate Eocene‐Early Oligocene and Miocene stages of extension and core complex formation in the Western Rhodopes, Mesta Basin, and Pirin Mountains (Bulgaria). Tectonophysics, 487, 59–84.
    [Google Scholar]
  37. Hatzipanagiotou, K. & Tsikouras, B. (2001) Rodingite formation from diorite in the Samothraki ophiolite, NE Aegean, Greece. Geol. J., 36, 93–109.
    [Google Scholar]
  38. Haydoutov, I., Kolcheva, K., Daieva, L.A., Savov, I. & Carrigan, C.H. (2004) Island arc origin of the Variegated Formations from the East Rhodope, Bulgaria – implications for the evolution of the Rhodopes Massif. Ofioliti, 29, 145–157.
    [Google Scholar]
  39. Herron, M.M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. J. Sediment. Petrol., 58, 820–829.
    [Google Scholar]
  40. Innocenti, F., Kolios, N., Manetti, P., Mazzuoli, R., Peccerillo, A., Rita, F. & Villari, L. (1984) Evolution and geodynamic significance of the Tertiary orogenic volcanism in northeastern Greece. Bull. Volcanol., 47, 25–37.
    [Google Scholar]
  41. Innocenti, F., Manetti, P., Mazzuoli, R., Pertusati, P., Fytikas, M. & Kolios, N. (1994) The geology and geodynamic significance of the Island of Limnos, North Aegean sea, Greece. Neues Jahrb. Geol. Palaontol., 11, 661–691.
    [Google Scholar]
  42. Innocenti, F., Manetti, P., Mazzuoli, R., Pertusati, P., Fytikas, M., Kolios, N., Vougioukalakis, G.E., Androulakakis, N., Critelli, S. & Caracciolo, L. (2009) Geological map (scale 1:50,000) of Limnos Island (Greece): explanatory notes. Acta Vulcanol., 20, 87–97.
    [Google Scholar]
  43. Izquierdo‐Llavall, E., Aldega, L., Cantarelli, V., Corrado, S., Gil‐Peña, I., Invernizzi, C. & Casas, A.M. (2013) On the origin of cleavage in the Central Pyrenees: structural and paleo‐thermal study. Tectonophysics, 608, 303–318.
    [Google Scholar]
  44. Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denèle, Y., Brun, J.P., Philippon, M., Paul, A., Salaun, G., Karabulut, H., Pironallo, C., Monié, P., Gueydan, F., Okay, A.I., Oberhansli, R., Pourteau, A., Augier, R., Gadenne, L. & Driussi, O. (2013) Aegean tectonics: strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 1–33.
    [Google Scholar]
  45. Kilias, A., Falalakis, G., Sfeikos, A., Papadimitriou, E., Vamvaka, A. & Gkarlaouni, C. (2011a) Architecture of Kinematics and Deformation History of the Tertiary Supradetachment Thrace Basin: Rhodope Province (NE Greece). In: New Frontiers in Tectonic Research – At the Midst of Plate Convergence (Ed. by U.Schattner ), pp. 241–268. InTech Publisher, Croatia.
    [Google Scholar]
  46. Kilias, A., Falalakis, G., Sfeikos, A., Papadimitriou, E., Vamvaka, A. & Gkarlaouni, C. (2011b) The Thrace basin in the Rhodope province of NE Greece – A tertiary supradetachment basin and its geodynamic implications. Tectonophysics, 595–596, 90–105.
    [Google Scholar]
  47. Kilias, A., Falalakis, G., Sfeikos, A., Papadimitriou, E., Vamvaka, A. & Gkarlaouni, C. (2013) The Thrace basin in the Rhodope province of NE Greece ‐ A tertiary supradetachment basin and its geodynamic implications. Tectonophysics, 595?596, 90–105.
    [Google Scholar]
  48. Kozhoukharov, D., Kozhoukharova, E. & Papanikolaou, D. (1988) Precambrian in the Rhodope Massif. In: Precambrian in Younger Fold Belts (Ed. by V.Zoubek ), pp. 723–778. John Wiley and Sons, Chichester.
    [Google Scholar]
  49. Krumm, S. (1996) WINFIT 1.2: version of November 1996 (The Erlangen geological and mineralogical software collection) of “WINFIT 1.0: a public domain program for interactive profile‐analysis under WINDOWS”. XIII Conference on Clay Mineralogy and Petrology, Praha, 1994. Acta Univers itatis Carolinae Geologica, 38, 253–261.
  50. Kübler, B. (1967) La cristallinité de l'illite e les zones tout a fait supérieures du métamorphisme. In: Etages Tectoniques. Colloque de Neuchatel, 1996, Univ. Neuchate, 105–121.
    [Google Scholar]
  51. Marchev, P., Raicheva, R., Downes, H., Vaselli, O., Chiaradia, M. & Moritz, R. (2004) Compositional diversity of Eocene‐Oligocene basaltic magmatism in the Eastern Rhodopes, SE Bulgaria: implications for genesis and tectonic setting. Tectonophysics, 393, 301–328.
    [Google Scholar]
  52. McLennan, S.M., Taylor, S.R. & Hemming, S.R. (2006) Composition, differentiation, and evolution of continental crust: constrains from sedimentary rocks and heat flow. In: Evolution and Differentiation of the Continental Crust (Ed. by M.Brown & T.Rushmer ), pp. 92–134. Cambridge University Press, Cambridge.
    [Google Scholar]
  53. Meinhold, G. & Boudagher‐Fadel, M. (2009) Geochemistry and biostratigraphy of Eocene sediments from Samothraki Island, NE Greece. Neues Jahrb. Geol. Palaontol., 256, 17–38.
    [Google Scholar]
  54. Merriman, R.J. (2005) Clay minerals and sedimentary basin history. Eur. J. Mineral., 17, 7–20.
    [Google Scholar]
  55. Merriman, R.J. & Peacor, D.R. (1999) Very low‐grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Low‐Grade Metamorphim (Ed. by M.Frey & D.Robinson ), pp. 10–60. Blackwell Scienze, Oxford.
    [Google Scholar]
  56. Mongelli, G., Critelli, S., Perri, F., Sonnino, M. & Perrone, V. (2006) Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mountains, Southern Italy. Geochem. J., 40, 197–209.
    [Google Scholar]
  57. Moore, D.M. & Reynolds, R.C. (1997) X‐ray Diffraction and Identification and Analysis of Clay Minerals. Oxford University Press, Oxford.
    [Google Scholar]
  58. Mposkos, E. & Wawrzenitz, N. (1995) Metapegmatites and pegmatites bracketing the time of high P‐metamorphism in polymetamorphic rocks of the E‐Rhodope, N. Greece: petrological and geochronological constraints. Proc. XV Congress Carpatho‐Balcan Assoc., Geol. Soc. Greece, Spec. Publ., 4, 602–608.
    [Google Scholar]
  59. Mukasa, S., Haydoutov, I., Carrigan, C. & Kolcheva, K. (2003) Thermobarometry and 40Ar/39Ar ages of eclogitic and gneissic rocks in the Sredna Gora and Rhodope terranes of Bulgaria. J. Czech Geol. Soc., 48, 94–95.
    [Google Scholar]
  60. Mukhopadhyay, P.K. (1994) Vitrinite reflectance as maturity parameter: petrographic and molecular characterization and its applications to basin modeling. In: Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations: American Chemical Society, Symposium Series (Ed. by P.K.Mukhopadhyay & W.G.Dow ), pp. 1–24. American Chemical Society, Washington, DC.
    [Google Scholar]
  61. Nesbitt, H.W. & Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.
    [Google Scholar]
  62. Nesbitt, H.W. & Young, G.M. (1996) Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology, 43, 341–358.
    [Google Scholar]
  63. Ovtcharova, M., Quadt, A.V., Heinrich, C.A., Frank, M., Kaiser‐Rohmeier, M., Peytcheva, I. & Cherneva, Z. (2003) Triggering of hydrothermal ore mineralization in the Central Rhodopean Core Complex (Bulgaria): insight from isotope and geochronological studies on tertiary magmatism and migmatisation. In: Mineral Exploration and Sustainable Development (Ed. by D.G.Eliopoulos & C.Allan ), 1, 367–370. Millpress, Rotterdam.
    [Google Scholar]
  64. Papadopoulos, P. (1982) Geologic Map of Greece, Scale 1:50 000. Sheet Maronia. I.G.M.E, Athens.
    [Google Scholar]
  65. Pe‐Piper, G. & Piper, D.J.W. (2006) Unique features of the Cenozoic igneous rocks of Greece. In: Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia (Ed. by DilekY. & PavilidesS. ) GSA Special Paper, 409, 259–282.
    [Google Scholar]
  66. Perri, F. (2008) Clay mineral assemblage of the Middle Triassic‐Lower Jurassic mudrocks from Western‐Central Mediterranean Alpine Chains. Per. Mineral., 77, 23–40.
    [Google Scholar]
  67. Perri, F. (2014) Composition, provenance and source weathering of Mesozoic sandstones from Western‐Central Mediterranean Alpine Chains. J. Afr. Earth Sc., 91, 32–43.
    [Google Scholar]
  68. Perri, F. & Ohta, T. (2014) Paleoclimatic conditions and paleoweathering processes on Mesozoic continental redbeds from Western‐Central Mediterranean Alpine Chains. Palaeogeogr. Palaeoclimatol. Palaeoecol., 395, 144–157.
    [Google Scholar]
  69. Perri, F., Rizzo, G., Mongelli, G., Critelli, S. & Perrone, V. (2008a) Zircon compositions of Lower Mesozoic redbeds of the Tethyan Margins, West‐Central Mediterranean area. Int. Geol. Rev., 50, 1022–1039.
    [Google Scholar]
  70. Perri, F., Cirrincione, R., Critelli, S., Mazzoleni, P. & Pappalardo, A. (2008b) Clay mineral assemblages and sandstone compositions of the Mesozoic Longobucco Group (north‐eastern Calabria): implication for burial history and diagenetic evolution. Int. Geol. Rev., 50, 1116–1131.
    [Google Scholar]
  71. Perri, F., Critelli, S., Mongelli, G. & Cullers, R.L. (2011a) Sedimentary evolution of the Mesozoic continental redbeds using geochemical and mineralogical tools: the case of Upper Triassic to Lowermost Jurassic Monte di Gioiosa mudrocks (Sicily, southern Italy). Int. J. Earth Sci., 100, 1569–1587.
    [Google Scholar]
  72. Perri, F., Muto, F. & Belviso, C. (2011b) Links between composition and provenance of Mesozoic siliciclastic sediments from Western Calabria (Southern Italy). It. J. Geosci., 130, 318–329.
    [Google Scholar]
  73. Perri, F., Critelli, S., Cavalcante, F., Mongelli, G., Dominici, R., Sonnino, M. & De Rosa, R. (2012a) Provenance signatures for the Miocene volcaniclastic succession of the Tufiti di Tusa Formation, southern Apennines, Italy. Geol. Mag., 149, 423–442.
    [Google Scholar]
  74. Perri, F., Critelli, S., Dominici, R., Muto, F., Tripodi, V. & Ceramicola, S. (2012b) Provenance and accommodation pathways of late Quaternary sediments in the deep‐water northern Ionian Basin, southern Italy. Sed. Geol., 280, 244–259.
    [Google Scholar]
  75. Perri, F., Critelli, S., Martìn‐Algarra, A., Martìn‐Martìn, M., Perrone, V., Mongelli, G. & Zattin, M. (2013) Triassic redbeds in the Malaguide Complex (Betic Cordillera – Spain): petrography, geochemistry, and geodynamic implications. Earth Sci. Rev., 117, 1–28.
    [Google Scholar]
  76. Perri, F., Borrelli, L., Critelli, S. & Gullà, G. (2014) Chemical and minero‐petrographic features of Plio‐Pleistocene fine‐grained sediments in Calabria (southern Italy). It. J. Geosci., 133, 101–115.
    [Google Scholar]
  77. Peytcheva, I. & Von Quadt, A. (1995) U‐Pb zircon dating of metagranites from Byala‐reka region in the east Rhodopes, Bulgaria. Proceedings XV Congress of the Carpathian–Balkan Geological Association, Geol. Soc. Greece Spec. Publ., 4, 637–642.
    [Google Scholar]
  78. Pollastro, R.M. (1993) Consideration and applications off the illite/smectite geothermometer in hydrocarbon‐bearing rocks of Miocene to Mississippian age. Clays Clay Miner., 41, 119–133.
    [Google Scholar]
  79. Pytte, A.M. & Reynolds, R.C.J.R. (1989) The kinetics of the smectite to illite reaction in contact metamorphic shales. In: The Termal History of Sedimentary Basins (Ed. by N.D.Naeser & T.H.McCulloch ), pp. 133–140. Springer‐Verlag, New York.
    [Google Scholar]
  80. Somelar, P., Kirsimaee, K. & Srodon, J. (2009) Mixed‐layer illite‐smectite in the Kinnekulle K‐bentonite, northern Baltic Basin. Clay Miner., 44, 455–468.
    [Google Scholar]
  81. Taylor, S.R. & McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, UK.
    [Google Scholar]
  82. Tsikouras, B. & Hatzipanagiotou, K. (1998) Petrographic evolution of an ophiolite fragment in an ensialic marginal basin, northern Aegean (Samothraki Island, Greece). Eur. J. Mineral., 10, 551–567.
    [Google Scholar]
  83. Tsikouras, B., Pe‐Piper, G. & Hatzipanagiotou, K. (1990) A new date for an ophiolite of the northeastern margin of the Vardar zone, Samothraki, Greece. Neues Jahrb. Geol. Palaontol. Monat., 11, 512–527.
    [Google Scholar]
  84. Tsokas, G.N., Christofides, C. & Papakonstantinou, C. (1996) A geophysical study of the granites and the sedimentary basins of the Xanthi area (N Greece). Pure Appl. Geophys., 146, 365–392.
    [Google Scholar]
  85. Weibel, R. (1999) Effects of burial on the clay assemblages in the Triassic Skagerrak Formation Denmark. Clay Miner., 34, 619–635.
    [Google Scholar]
  86. Yanev, Y., Innocenti, F., Manetti, P. & Serri, G. (1998) Upper Eocene‐Oligocene collision‐related volcanism in Eastern Rhodopes (Bulgaria)‐Western Thrace (Greece): petrogenetic affinity and geodynamic significance. Acta Vulcanol., 10, 265–277.
    [Google Scholar]
  87. Zaghloul, M.N., Critelli, S., Perri, F., Mongelli, G., Perrone, V., Sonnino, M., Tucker, M., Aiello, M. & Ventimiglia, C. (2010) Depositional systems, composition and geochemistry of Triassic rifted‐continental margin redbeds of Internal Rif Chain, Morocco. Sedimentology, 57, 312–350.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12112
Loading
/content/journals/10.1111/bre.12112
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error