1887
Volume 33, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

In the northern Levant Basin, hundreds of fluid escape pipes are organized in linear trails, documenting widespread cross‐evaporite fluid migration since the Late Pliocene/Early Pleistocene. Major uplift of the basin margin is inferred to have caused lateral overpressure transfer and the resulting seal failure above prominent sub‐salt anticlines. This study shows that cross‐evaporite fluid escape in the Eastern Mediterranean can have multiple causes, which vary over time, act in synergy, and have different impacts in the various areas of this salt giant basins.

, Abstract

Despite salt being regarded as an extremely efficient, low‐permeability hydraulic seal, an increasing number of cross‐evaporite fluid escape features have been documented in salt‐bearing sedimentary basins. Because of this, it is clear that our understanding of how thick salt deposits impact fluid flow in sedimentary basins is incomplete. We here examine the causes and evolution of cross‐evaporite fluid escape in the northern Levant Basin, Eastern Mediterranean. High‐quality 3D seismic data offshore Lebanon image hundreds of supra‐salt fluid escape pipes distributed widely along the margin. The pipes consistently originate at the crest of prominent sub‐salt anticlines, where overlying salt is relatively thin. The fact the pipes crosscut the salt suggests that hydrofracturing occurred, permitting focused fluid flow. Sequential pipes from unique emission points are organized along trails that are several kilometres long, and which are progressively deformed due to basinward gravity gliding of salt and its overburden. Correlation of pipes in 12 trails suggests margin‐wide fluid escape started in the Late Pliocene/Early Pleistocene, coincident with a major phase of uplift of the Levant margin. We interpret that the consequent transfer of overpressure from the central basin area, in addition to gas exsolution from hydrocarbons already trapped in sub‐salt anticlines, triggered seal failure and cross‐evaporite fluid flow. We infer that other causes of fluid escape in the Eastern Mediterranean, such as subsurface pressure changes driven by sea‐level variations and salt deposition associated with the Messinian Salinity Crisis, played only a minor role in triggering cross‐evaporite fluid flow in the northern Levant Basin. Further phases of fluid escape are unique to each anticline and cannot be easily correlated across the margin. Therefore, despite a common initial cause, long‐term fluid escape proceeded according to structure‐specific characteristics, such as local dynamics of fluid migration and anticline geometry. Our work shows that the mechanisms triggering cross‐evaporite fluid flow in salt basins vary in time and space.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12536
2021-05-24
2024-04-27
Loading full text...

Full text loading...

References

  1. Al‐Balushi, A. N., Neumaier, M., Fraser, A. J., & Jackson, C.‐A.‐L. (2016). The impact of the Messinian salinity crisis on the petroleum system of the Eastern Mediterranean: A critical assessment using 2D petroleum system modelling. Petroleum Geoscience, 22, 357–379. https://doi.org/10.1144/petgeo2016‐054
    [Google Scholar]
  2. Allen, H., Jackson, C.‐A.‐L., & Fraser, A. J. (2016). Gravity‐driven deformation of a youthful saline giant: The interplay between gliding and spreading in the Messinian basins of the Eastern Mediterranean. Petroleum Geoscience, 22, 340–356. https://doi.org/10.1144/petgeo2016‐034
    [Google Scholar]
  3. Andresen, K. J., Huuse, M., Schødt, N. H., Clausen, L. F., & Seidler, L. (2011). Hydrocarbon plumbing systems of salt minibasins offshore Angola revealed by three‐dimensional seismic analysis. AAPG Bulletin, 95, 1039–1065. https://doi.org/10.1306/12131010046
    [Google Scholar]
  4. Barabasch, J., Ducros, M., Hawie, N., Bou Daher, S., Nader, F. H., & Littke, R. (2019). Integrated 3D forward stratigraphic and petroleum system modeling of the Levant Basin, Eastern Mediterranean. Basin Research, 31, 228–252. https://doi.org/10.1111/bre.12318
    [Google Scholar]
  5. Barnes, A. E. (2016). Handbook of Poststack Seismic Attributes, Geophysical References Series. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560803324
    [Google Scholar]
  6. Bertoni, C., & Cartwright, J. A. (2005). 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean. Journal of the Geological Society, 162, 909–926. https://doi.org/10.1144/0016‐764904‐126
    [Google Scholar]
  7. Bertoni, C., Cartwright, J. (2015). Messinian evaporites and fluid flow. Marine and Petroleum Geology, 66, 165–176. https://doi.org/10.1016/j.marpetgeo.2015.02.003
    [Google Scholar]
  8. Bertoni, C., Kirkham, C., Cartwright, J., Hodgson, N., & Rodriguez, K. (2017). Seismic indicators of focused fluid flow and cross‐evaporitic seepage in the Eastern Mediterranean. Marine and Petroleum Geology, 88, 472–488. https://doi.org/10.1016/j.marpetgeo.2017.08.022
    [Google Scholar]
  9. Bou Daher, S., Ducros, M., Michel, P., Hawie, N., Nader, F. H., & Littke, R. (2016). 3D thermal history and maturity modelling of the Levant Basin and its eastern margin, offshore–onshore Lebanon. Arabian Journal of Geosciences, 9, 440. https://doi.org/10.1007/s12517‐016‐2455‐1
    [Google Scholar]
  10. Brown, A. R. (2001). Color in seismic display. The Leading Edge, 20, 549. https://doi.org/10.1190/1.1438992
    [Google Scholar]
  11. Brown, A. (2011). Interpretation of Three‐Dimensional Seismic Data, AAPG Memoir 42 (7th ed.). AAPG & SEG.
    [Google Scholar]
  12. Capozzi, R., Oppo, D., & Taviani, M. (2017). Cold seepages: An economic tool for hydrocarbon appraisal. AAPG Bulletin, 101, 617–623. https://doi.org/10.1306/011817DIG17041
    [Google Scholar]
  13. Cartwright, J. A., & Jackson, M. P. A. (2008). Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean. Geological Society of America Bulletin, 120, 399–413. https://doi.org/10.1130/B26081X.1
    [Google Scholar]
  14. Cartwright, J., Kirkham, C., Bertoni, C., Hodgson, N., & Rodriguez, K. (2018). Direct calibration of salt sheet kinematics during gravity‐driven deformation. Geology, 46, 623–626. https://doi.org/10.1130/G40219.1
    [Google Scholar]
  15. Cartwright, J., & Santamarina, C. (2015). Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis. Marine and Petroleum Geology, 65, 126–140. https://doi.org/10.1016/j.marpetgeo.2015.03.023
    [Google Scholar]
  16. Cartwright, J., Stewart, S., & Clark, J. (2001). Salt dissolution and salt‐related deformation of the Forth Approaches Basin, UK North Sea. Marine and Petroleum Geology, 18, 757–778. https://doi.org/10.1016/S0264‐8172(01)00019‐8
    [Google Scholar]
  17. Chopra, S., & Marfurt, K. J. (2007). Seismic Attributes for Prospect Identification and Reservoir Characterization, Geophysical Developments Series. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers. https://doi.org/10.1190/1.9781560801900
    [Google Scholar]
  18. Davison, I. (2009). Faulting and fluid flow through salt. Journal of the Geological Society, 166, 205–216. https://doi.org/10.1144/0016‐76492008‐064
    [Google Scholar]
  19. de Mahiques, M. M., Schattner, U., Lazar, M., Sumida, P. Y. G., & de Souza, L. A. P. (2017). An extensive pockmark field on the upper Atlantic margin of Southeast Brazil: Spatial analysis and its relationship with salt diapirism. Heliyon, 3, e00257. https://doi.org/10.1016/j.heliyon.2017.e00257
    [Google Scholar]
  20. Deville, E., & Guerlais, S.‐H. (2009). Cyclic activity of mud volcanoes: Evidences from Trinidad (SE Caribbean). Marine and Petroleum Geology, 26, 1681–1691. https://doi.org/10.1016/j.marpetgeo.2009.03.002
    [Google Scholar]
  21. Dimitrov, L., & Woodside, J. (2003). Deep sea pockmark environments in the eastern Mediterranean. Marine Geology. Sedimentary processes and seafloor hydrocarbon emission on deep European continental margins, 195, 263–276. https://doi.org/10.1016/S0025‐3227(02)00692‐8
    [Google Scholar]
  22. Eruteya, O. E., Waldmann, N., Schalev, D., Makovsky, Y., & Ben‐Avraham, Z. (2015). Intra‐ to post‐Messinian deep‐water gas piping in the Levant Basin, SE Mediterranean. Marine and Petroleum Geology, 66, 246–261. https://doi.org/10.1016/j.marpetgeo.2015.03.007
    [Google Scholar]
  23. Esestime, P., Hewitt, A., & Hodgson, N. (2016). Zohr – A newborn carbonate play in the Levantine Basin, East‐Mediterranean. First Break, 34, 8.
    [Google Scholar]
  24. Evans, S. L., & Jackson, C.‐A.‐L. (2020). Base‐salt relief controls salt‐related deformation in the Outer Kwanza Basin, offshore Angola. Basin Research, 32, 668–687. https://doi.org/10.1111/bre.12390
    [Google Scholar]
  25. Evans, S., Jackson, C.‐A.‐L., & Oppo, D. (2020). Taking the pulse of salt‐detached gravity gliding in the eastern Mediterranean. EarthArXiv. https://doi.org/10.31223/osf.io/5usv7
  26. Feng, Y. E., Yankelzon, A., Steinberg, J., & Reshef, M. (2016). Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean. Marine Geology, 376, 118–131. https://doi.org/10.1016/j.margeo.2016.04.004
    [Google Scholar]
  27. Foschi, M., Cartwright, J. A., & Peel, F. J. (2014). Vertical anomaly clusters: Evidence for vertical gas migration across multilayered sealing sequences. AAPG Bulletin, 98, 1859–1884. https://doi.org/10.1306/04051413121
    [Google Scholar]
  28. Fu, B., & Aharon, P. (1998). Sources of hydrocarbon‐rich fluids advecting on the seafloor in the northern Gulf of Mexico. Gulf Coast Association of Geological Societies, 48, 73–81.
  29. Gardosh, M. A., & Tannenbaum, E. (2014).The Petroleum Systems of Israel. Mem. 106 Pet. Syst. Tethyan Reg. 179–216.
  30. Gay, A., Lopez, M., Berndt, C., & Séranne, M. (2007). Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology, 244, 68–92. https://doi.org/10.1016/j.margeo.2007.06.003
    [Google Scholar]
  31. Ghalayini, R., Daniel, J.‐M., Homberg, C., Nader, F. H., & Comstock, J. E. (2014). Impact of Cenozoic strike‐slip tectonics on the evolution of the northern Levant Basin (offshore Lebanon): Cenozoic tectonics of the Levant basin. Tectonics, 33, 2121–2142. https://doi.org/10.1002/2014TC003574
    [Google Scholar]
  32. Ghalayini, R., Nader, F. H., Bou Daher, S., Hawie, N., & Chbat, W. E. (2018). Petroleum systems of Lebanon: An update and review. Journal of Petroleum Geology, 41, 189–214. https://doi.org/10.1111/jpg.12700
    [Google Scholar]
  33. Gradmann, S., Hübscher, C., Ben‐Avraham, Z., Gajewski, D., & Netzeband, G. (2005). Salt tectonics off northern Israel. Marine and Petroleum Geology, 22, 597–611. https://doi.org/10.1016/j.marpetgeo.2005.02.001
    [Google Scholar]
  34. Gvirtzman, Z., Reshef, M., Buch‐Leviatan, O., & Ben‐Avraham, Z. (2013). Intense salt deformation in the Levant Basin in the middle of the Messinian Salinity Crisis. Earth and Planetary Science Letters, 379, 108–119. https://doi.org/10.1016/j.epsl.2013.07.018
    [Google Scholar]
  35. Hall, J., Calon, T. J., Aksu, A. E., & Meade, S. R. (2005). Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, Eastern Mediterranean Sea. Marine Geology, 221, 261–297. https://doi.org/10.1016/j.margeo.2005.03.007
    [Google Scholar]
  36. Hansen, J. P. V., Cartwright, J. A., Huuse, M., & Clausen, O. R. (2005). 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid‐Norway. Basin Research, 17, 123–139. https://doi.org/10.1111/j.1365‐2117.2005.00257.x
    [Google Scholar]
  37. Haq, B., Gorini, C., Baur, J., Moneron, J., & Rubino, J.‐L. (2020). Deep Mediterranean’s Messinian evaporite giant: How much salt?Global and Planetary Change, 184, 103052. https://doi.org/10.1016/j.gloplacha.2019.103052
    [Google Scholar]
  38. Hawie, N., Gorini, C., Deschamps, R., Nader, F. H., Montadert, L., Granjeon, D., & Baudin, F. (2013). Tectono‐stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Marine and Petroleum Geology, 48, 392–410. https://doi.org/10.1016/j.marpetgeo.2013.08.004
    [Google Scholar]
  39. Hübscher, C., Tahchi, E., Klaucke, I., Maillard, A., & Sahling, H. (2009). Salt tectonics and mud volcanism in the Latakia and Cyprus Basins, eastern Mediterranean. Tectonophysics, 470, 173–182. https://doi.org/10.1016/j.tecto.2008.08.019
    [Google Scholar]
  40. Jackson, M. P. A., & Hudec, M. R. (2005). Stratigraphic record of translation down ramps in a passive‐margin salt detachment. Journal of Structural Geology, 27, 889–911. https://doi.org/10.1016/j.jsg.2005.01.010
    [Google Scholar]
  41. Jackson, M. P. A., & Hudec, M. R. (2017). Influence of salt on petroleum systems. In M. P. A.Jackson & M. R.Hudec (eds.), Salt tectonics: Principles and practice (pp. 424–456). Cambridge University Press. https://doi.org/10.1017/9781139003988.020
    [Google Scholar]
  42. Judd, A., & Hovland, M. (2007). Seabed fluid flow: The impact on geology, biology and the marine environment. Cambridge University Press. https://doi.org/10.1017/CBO9780511535918
    [Google Scholar]
  43. Kabir, M., Iacopini, D., Hartley, A., Maselli, V., & Oppo, D. (2019). Seismic Characterization of the Top Messinian Unit in North Eastern Levant Basin, Offshore Lebanon. Presented at the 34th IAS Meeting of Sedimentology, IAS, Rome, Italy.
  44. Kallweit, R. S., & Wood, L. C. (1982). The limits of resolution of zero‐phase wavelets. Geophysics, 47, 1035–1046. https://doi.org/10.1190/1.1441367
    [Google Scholar]
  45. Kirkham, C., Cartwright, J., Bertoni, C., Rodriguez, K., & Hodgson, N. (2019). 3D kinematics of a thick salt layer during gravity‐driven deformation. Marine and Petroleum Geology, 110, 434–449. https://doi.org/10.1016/j.marpetgeo.2019.07.036
    [Google Scholar]
  46. Kirkham, C., Cartwright, J., Hermanrud, C., & Jebsen, C. (2017). The spatial, temporal and volumetric analysis of a large mud volcano province within the Eastern Mediterranean. Marine and Petroleum Geology, 81, 1–16. https://doi.org/10.1016/j.marpetgeo.2016.12.026
    [Google Scholar]
  47. Kirkham, C., Cartwright, J., Hermanrud, C., & Jebsen, C. (2018). The genesis of mud volcano conduits through thick evaporite sequences. Basin Research, 30, 217–236. https://doi.org/10.1111/bre.12250
    [Google Scholar]
  48. Lebedeva‐Ivanova, N., Polteau, S., Bellwald, B., Planke, S., Berndt, C., & Henriksen Stokke, H. (2018). Toward one‐meter resolution in 3D seismic. The Leading Edge, 37, 794–864. https://doi.org/10.1190/tle37110818.1
    [Google Scholar]
  49. Leduc, A. M., Davies, R. J., Swarbrick, R. E., & Imber, J. (2013). Fluid flow pipes triggered by lateral pressure transfer in the deepwater western Niger Delta. Marine and Petroleum Geology, 43, 423–433. https://doi.org/10.1016/j.marpetgeo.2012.12.005
    [Google Scholar]
  50. Lofi, J., Déverchère, J., Gaullier, V., Gillet, H., Gorini, C., Guennoc, P., Loncke, L., Maillard, A., Sage, F., & Thinon, I. (2011). Seismic Atlas of the Messinian Salinity Crisis markers in the Mediterranean and Black Seas, Mémoire de la Société Géologique n.s. Société Géologique de France.
    [Google Scholar]
  51. Loncke, L., Mascle, J., & Parties, F. S. (2004). Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep‐sea fan (Eastern Mediterranean): Geophysical evidences. Marine and Petroleum Geology, 21, 669–689. https://doi.org/10.1016/j.marpetgeo.2004.02.004
    [Google Scholar]
  52. Madof, A. S., Bertoni, C., & Lofi, J. (2019). Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology, 47, 171–174. https://doi.org/10.1130/G45873.1
    [Google Scholar]
  53. Maestrelli, D., Iacopini, D., Jihad, A. A., Bond, C. E., & Bonini, M. (2017). Seismic and structural characterization of fluid escape pipes using 3D and partial stack seismic from the Loyal Field (Scotland, UK): A multiphase and repeated intrusive mechanism. Marine and Petroleum Geology, 88, 489–510. https://doi.org/10.1016/j.marpetgeo.2017.08.016
    [Google Scholar]
  54. Marlow, L., Kornpihl, K., & Kendall, C. (2011). 2‐D Basin modeling study of petroleum systems in the Levantine Basin, Eastern Mediterranean. GeoArabia, 16, 17–42.
    [Google Scholar]
  55. Matmon, A., Enzel, Y., Zilberman, E., & Heimann, A. (1999). Late Pliocene and Pleistocene reversal of drainage systems in northern Israel: Tectonic implications. Geomorphology, 28, 43–59. https://doi.org/10.1016/S0169‐555X(98)00097‐X
    [Google Scholar]
  56. McManus, K. M., & Hanor, J. S. (1993). Diagenetic evidence for massive evaporite dissolution, fluid flow, and mass transfer in the Louisiana Gulf Coast. Geology, 21, 727–730. https://doi.org/10.1130/0091‐7613(1993)021<0727:DEFMED>2.3.CO;2
    [Google Scholar]
  57. Meilijson, A., Hilgen, F., Sepúlveda, J., Steinberg, J., Fairbank, V., Flecker, R., Waldmann, N. D., Spaulding, S. A., Bialik, O. M., Boudinot, F. G., Illner, P., & Makovsky, Y. (2019). Chronology with a pinch of salt: Integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long‐lasting halite deposition during Atlantic connectivity. Earth Science Reviews, 194, 374–398. https://doi.org/10.1016/j.earscirev.2019.05.011
    [Google Scholar]
  58. Morley, C. K., Warren, J., Tingay, M., Boonyasaknanon, P., & Julapour, A. (2014). Comparison of modern fluid distribution, pressure and flow in sediments associated with anticlines growing in deepwater (Brunei) and continental environments (Iran). Marine and Petroleum Geology, 51, 210–229. https://doi.org/10.1016/j.marpetgeo.2013.11.011
    [Google Scholar]
  59. Moss, J. L., & Cartwright, J. (2010). 3D seismic expression of km‐scale fluid escape pipes from offshore Namibia: 3D seismic expression of km‐scale fluid escape pipes. Basin Research, 22, 481–501. https://doi.org/10.1111/j.1365‐2117.2010.00461.x
    [Google Scholar]
  60. Nader, F. H., Inati, L., Ghalayini, R., Hawie, N., & Bou Daher, S. (2018). Key geological characteristics of the Saida‐Tyr Platform along the eastern margin of the Levant Basin, offshore Lebanon: Implications for hydrocarbon exploration. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 73, 50. https://doi.org/10.2516/ogst/2018045
    [Google Scholar]
  61. Netzeband, G. L., Hübscher, C. P., & Gajewski, D. (2006). The structural evolution of the Messinian evaporites in the Levantine Basin. Marine Geology, 230, 249–273. https://doi.org/10.1016/j.margeo.2006.05.004
    [Google Scholar]
  62. Oppo, D., Capozzi, R., & Picotti, V. (2013). A new model of the petroleum system in the Northern Apennines, Italy. Marine and Petroleum Geology, 48, 57–76. https://doi.org/10.1016/j.marpetgeo.2013.06.005
    [Google Scholar]
  63. Oppo, D., & Hovland, M. (2019). Role of deep‐sourced fluids on the initiation and growth of isolated carbonate build‐ups. Marine and Petroleum Geology, 105, 141–157. https://doi.org/10.1016/j.marpetgeo.2019.04.019
    [Google Scholar]
  64. Pichel, L. M., Peel, F., Jackson, C.‐A.‐L., & Huuse, M. (2018). Geometry and kinematics of salt‐detached ramp syncline basins. Journal of Structural Geology, 115, 208–230. https://doi.org/10.1016/j.jsg.2018.07.016
    [Google Scholar]
  65. Reijenstein, H. M., Posamentier, H. W., & Bhattacharya, J. P. (2011). Seismic geomorphology and high‐resolution seismic stratigraphy of inner‐shelf fluvial, estuarine, deltaic, and marine sequences, Gulf of Thailand. AAPG Bulletin, 95, 1959–1990. https://doi.org/10.1306/03151110134
    [Google Scholar]
  66. Robertson, A. H. F., Dixon, J. E., Brown, S., Collins, A., Morris, A., Pickett, E., Sharp, I., & Ustaömer, T. (1996). Alternative tectonic models for the Late Palaeozoic‐Early Tertiary development of Tethys in the Eastern Mediterranean region. Geological Society, London, Special Publications, 105, 239–263. https://doi.org/10.1144/GSL.SP.1996.105.01.22
    [Google Scholar]
  67. Rocco, S., Woods, A. W., Harrington, J., & Norris, S. (2017). An experimental model of episodic gas release through fracture of fluid confined within a pressurized elastic reservoir. Geophysical Research Letters, 44, 751–759. https://doi.org/10.1002/2016GL071546
    [Google Scholar]
  68. Roveri, M., Gennari, R., Lugli, S., Manzi, V., Minelli, N., Reghizzi, M., Riva, A., Rossi, M. E., Schreiber, B. C. (2016). The Messinian salinity crisis: open problems and possible implications for Mediterranean petroleum systems. Petroleum Geoscience, 22 (4), 283–290. https://doi.org/10.1144/petgeo2015‐089
    [Google Scholar]
  69. Roveri, M., Lugli, S., Manzi, V., Gennari, R., & Schreiber, B. C. (2014). High‐resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: Implications for marginal to central basins correlation. Marine Geology, 349, 113–125. https://doi.org/10.1016/j.margeo.2014.01.002
    [Google Scholar]
  70. Salazar, J. A., Knapp, J. H., Knapp, C. C., & Pyles, D. R. (2014). Salt tectonics and Pliocene stratigraphic framework at MC‐118, Gulf of Mexico: An integrated approach with application to deep‐water confined structures in salt basins. Marine and Petroleum Geology, 50, 51–67. https://doi.org/10.1016/j.marpetgeo.2013.11.003
    [Google Scholar]
  71. Schoenherr, J., Urai, J. L., Kukla, P. A., Littke, R., Schleder, Z., Larroque, J.‐M., Newall, M. J., Al‐Abry, N., Al‐Siyabi, H. A., & Rawahi, Z. (2007). Limits to the sealing capacity of rock salt: A case study of the infra‐Cambrian Ara Salt from the South Oman salt basin. AAPG Bulletin, 91, 1541–1557. https://doi.org/10.1306/06200706122
    [Google Scholar]
  72. Selley, R., & Sonnenberg, S. (2015). Elements of petroleum geology. Elsevier. https://doi.org/10.1016/C2010‐0‐67090‐8
    [Google Scholar]
  73. Steinberg, J., Gvirtzman, Z., Folkman, Y., & Garfunkel, Z. (2011). Origin and nature of the rapid late Tertiary filling of the Levant Basin. Geology, 39, 355–358. https://doi.org/10.1130/G31615.1
    [Google Scholar]
  74. Swarbrick, R. E., & Osborne, M. J. (1998). Mechanisms that generate abnormal pressures: An overview. In Abnormal Pressures in Hydrocarbon Environments, AAPG Memoir 70 (AAPG Special Volumes, pp. 13–34).
    [Google Scholar]
  75. Tingay, M. R. P., Hillis, R. R., Swarbrick, R. E., Morley, C. K., & Damit, A. R. (2007). ‘Vertically transferred’ overpressures in Brunei: Evidence for a new mechanism for the formation of high‐magnitude overpressure. Geology, 35, 1023–1026. https://doi.org/10.1130/G23906A.1
    [Google Scholar]
  76. von Berlepsch, T., & Haverkamp, B. (2016). Salt as a host rock for the geological repository for nuclear waste. Elements, 12, 257–262. https://doi.org/10.2113/gselements.12.4.257
    [Google Scholar]
  77. Wagner, B. H., & Jackson, M. P. A. (2011). Viscous flow during salt welding. Tectonophysics, 510, 309–326. https://doi.org/10.1016/j.tecto.2011.07.012
    [Google Scholar]
  78. Warren, J. K. (2006). Evaporites: Sediments, resources and hydrocarbons. Springer Science & Business Media.
    [Google Scholar]
  79. Warren, J. K. (2016). Evaporites: A geological compendium (2nd ed.). Springer International Publishing. https://doi.org/10.1007/978‐3‐319‐13512‐0
    [Google Scholar]
  80. Warren, J. K. (2017). Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term. Earth Science Reviews, 165, 302–341. https://doi.org/10.1016/j.earscirev.2016.11.008
    [Google Scholar]
  81. Widess, M. (1973). How thin is a thin bed?Geophysics, 38, 1021–1240. https://doi.org/10.1190/1.1440403
    [Google Scholar]
  82. Yardley, G. S., & Swarbrick, R. E. (2000). Lateral transfer: A source of additional overpressure?Marine and Petroleum Geology, 17, 523–537. https://doi.org/10.1016/S0264‐8172(00)00007‐6
    [Google Scholar]
  83. Yilmaz, Ö. (2001). Seismic data analysis, investigations in geophysics. In Society of Exploration Geophysicists (2065p). https://doi.org/10.1190/1.9781560801580
    [Google Scholar]
  84. Zhang, R., & Castagna, J. (2011). Seismic sparse‐layer reflectivity inversion using basis pursuit decompositionSeismic reflection inversion. Geophysics, 76, R147–R158. https://doi.org/10.1190/geo2011‐0103.1
    [Google Scholar]
  85. Zitter, T. A. C., Huguen, C., & Woodside, J. M. (2005). Geology of mud volcanoes in the eastern Mediterranean from combined sidescan sonar and submersible surveys. Deep Sea Research Part I: Oceanographic Research Papers, 52, 457–475. https://doi.org/10.1016/j.dsr.2004.10.005
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12536
Loading
/content/journals/10.1111/bre.12536
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error