1887
Volume 33 Number 2
  • E-ISSN: 1365-2117
PDF

Abstract

[

In this study we integrate data from over thirty published LTT and t‐T modelling studies from Morocco and its surroundings using a 3‐step workflow to obtain 1) exhumation/burial rates, 2) erosion rates, and 3) paleoreconstructions of source‐to‐sink domains (Source‐and‐Sink maps), between the Permian and the Present.

, Abstract

Continental passive margins and their hinterlands in the Atlantic realm have been the locus of many Low Temperature Thermochronology (LTT) and time‐Temperature (t‐T) modelling studies that evidence pre‐, syn‐ and post‐rift episodic km‐scale exhumation and burial episodes. In this study, we integrate data from over 30 published LTT and t‐T modelling studies from Morocco and its surroundings using a three‐step workflow to obtain: (a) exhumation/burial rates, (b) erosion rates and (c) palaeoreconstructions of source‐to‐sink domains, between the Permian and the Present. Our synthesis of available t‐T modelling results predicts high exhumation rates in the Anti‐Atlas (0.1 km/Myr) during the Early to Middle Jurassic, and in the High Atlas (0.1 km/Myr) and Rif (up to 0.5 km/Myr) during the Neogene. These rates are comparable to values typical of rift flank, domal or structural uplifts settings. During the other investigated periods, exhumation rates in the Meseta, High‐Atlas, Anti‐Atlas and Reguibat shield are around 0.04 ± 0.02 km/Myr. Interpolation of the exhumation rates at the regional scale allow calculation of the volume of rocks eroded. Estimates of erosion rates are between 0.2 x 103 and 7.5 x 103 km3 (in the Meseta and the Reguibat Shield respectively). Ten erosional (quantitative, from interpolation results) and depositional (qualitative, from data synthesis) “source‐and‐sink” maps have been constructed, with emphasis on the Jurassic and Cretaceous periods. The maps integrate the extent of exhumed domains, using information from geological maps, lithofacies and biostratigraphic data from new geological fieldwork and well data from onshore and offshore basins. The results illustrate changes in the source‐to‐sink systems and allow for a better understanding of the Central Atlantic margin hinterlands evolution.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12517
2021-03-15
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/2/bre12517.html?itemId=/content/journals/10.1111/bre.12517&mimeType=html&fmt=ahah

References

  1. Abioui, M., Ferry, S., Grosheny, D., Içame, N., Robert, E., & Benssaou, M. (2019). The Cretaceous marine onlap on Palaeozoic deposits (Smara–Lâayoune Basin, South Morocco). Comparison with neighbouring regions. Comptes Rendus Geoscience, 351(7), 498–507. https://doi.org/10.1016/j.crte.2019.09.003
    [Google Scholar]
  2. Abou Ali, N., Hafid, M., Chellaï, E. H., Nahim, M., & Zizi, M. (2005). Structure de socle, sismostratigraphie et héritage structural au cours du rifting au niveau de la marge d’Ifni/Tan‐Tan (Maroc sud‐occidental). Comptes Rendus Geosciences, 337, 1267–1276. 16/j.crte.2005.07.003
    [Google Scholar]
  3. Adaci, M., Tabuce, R., Mebrouk, F., Bensalah, M., Fabre, P.‐H., Hautier, L., Jaeger, J.‐J., Lazzari, V., Mahboubi, M., Marivaux, L., Otero, O., Peigné, S., & Tong, H. (2007). Nouveaux sites à vertébrés paléogènes dans la région des Gour Lazib (Sahara Nord‐occidental, Algérie). Comptes Rendus Palevol, 6, 535–544. https://doi.org/10.1016/j.crpv.2007.09.001
    [Google Scholar]
  4. Aït Boughrous, A., Boulanouar, M., Yacoubi, M., & Coineau, N. (2007). The first Microcharon (Crustacea Isopoda, Microparasellidae) from the Moroccan North Saharan Platform. Origin and Palaeobiogeography: Contribution to Zoology, 76, 19–32. https://doi.org/10.1163/18759866‐07601003
    [Google Scholar]
  5. Ait Brahim, L., Chotin, P., Hinaj, S., Abdelouafi, A., El Adraoui, A., Nakcha, C., Dhont, D., Charroud, M., Sossey Alaoui, F., Amrhar, M., Bouaza, A., Tabyaoui, H., & Chaouni, A. (2002). Paleostress evolution in the Moroccan African margin from Triassic to Present. Tectonophysics, 357, 187–205. https://doi.org/10.1016/S0040‐1951(02)00368‐2
    [Google Scholar]
  6. Ali, S., Stattegger, K., Garbe‐Schönberg, D., Frank, M., Kraft, S., & Kuhnt, W. (2014). The provenance of Cretaceous to Quaternary sediments in the Tarfaya basin, SW Morocco: Evidence from trace element geochemistry and radiogenic Nd–Sr isotopes. Journal of African Earth Sciences, 90, 64–76. https://doi.org/10.1016/j.jafrearsci.2013.11.010
    [Google Scholar]
  7. Aloui, T., Dasgupta, P., & Chaabani, F. (2012). Facies pattern of the Sidi Aïch Formation: Reconstruction of Barremian paleogeography of Central North Africa. Journal of African Earth Sciences, 71, 18–42.
    [Google Scholar]
  8. Ambroggi, R., & Lapparent, A. (1954). Découverte d‘empreintes de pas de Reptiles dans le Maestrichtien d’Agadir (Maroc): Compte Rendu sommaire des séances de la Société géologique de France, 51–52.
  9. Amidon, W. H., Roden‐Tice, M., Anderson, A. J., McKeon, R. E., & Shuster, D. L. (2016). Late Cretaceous unroofing of the White Mountains, New Hampshire, USA: An episode of passive margin rejuvenation?Geology, 44, 415–418. https://doi.org/10.1130/G37429.1
    [Google Scholar]
  10. Andreu, B., & Tronchetti, G. (1994). Ostracodes et foraminifères du Crétacé supérieur du synclinal d'El Koubbat, Moyen Atlas, Maroc. Biostratigraphie, Paléoenvironements, Paléobiogéopgraphie, systématique des ostracodes: Congrès français de stratigraphie, 1, Toulouse.
  11. Aquit, M., Kuhnt, W., Holbourn, A., Chellai, E. H., Stattegger, K., Kluth, O., & Jabour, H. (2013). Late Cretaceous paleoenvironmental evolution of the Tarfaya Atlantic coastal Basin, SW Morocco. Cretaceous Research, 45, 288–305. https://doi.org/10.1016/j.cretres.2013.05.004
    [Google Scholar]
  12. Arab, M., Bracène, R., Roure, F., Zazoun, R. S., Mahdjoub, Y., & Badji, R. (2015). Source rocks and related petroleum systems of the Chelif Basin, (western Tellian domain, north Algeria). Marine and Petroleum Geology, 64, 363–385. https://doi.org/10.1016/j.marpetgeo.2015.03.017
    [Google Scholar]
  13. Arantegui, A. (2018). Characterisation of Mesozoic Depositional Systems along the Atlantic Passive Margin of Morocco. North Aaiun‐Tarfaya Basin: University of Manchester, Ph.D. Thesis, 169 p.
  14. Arantegui, A., Jerrett, R., Schröder, S., Bulot, L. G., Gatto, R., Monari, S., & Redfern, J. (2019). Constraining Mesozoic early post‐rift depositional systems evolution along the eastern Central Atlantic margin. Sedimentary Geology, 386, 31–51. https://doi.org/10.1016/j.sedgeo.2019.03.005
    [Google Scholar]
  15. Azdimousa, A., Bourgois, J., Poupeau, G., Vázquez, M., Asebriy, L., & Labrin, E. (2013). Fission track thermochronology of the Beni Bousera peridotite massif (Internal Rif, Morocco) and the exhumation of ultramafic rocks in the Gibraltar Arc. Arabian Journal of Geosciences, 7, 1993–2005. https://doi.org/10.1007/s12517‐013‐0924‐3
    [Google Scholar]
  16. Azdimousa, A., Jabaloy‐Sánchez, A., Talavera, C., Asebriy, L., González‐Lodeiro, F., & Evans, N. J. (2019). Detrital zircon U‐Pb ages in the Rif Belt (northern Morocco): Paleogeographic implications. Gondwana Research, 70, 133–150. https://doi.org/10.1016/j.gr.2018.12.008
    [Google Scholar]
  17. Babault, J., Teixell, A., Arboleya, M. L., & Charroud, M. (2008). A Late Cenozoic age for long‐wavelength surface uplift of the Atlas Mountains of Morocco. Terra Nova, 20(2), 102–107. https://doi.org/10.1111/j.1365‐3121.2008.00794.x
    [Google Scholar]
  18. Balestrieri, M. L., Moratti, G., Bigazzi, G., & Algouti, A. (2009). Neogene exhumation of the Marrakech High Atlas (Morocco) recorded by apatite fission‐track analysis. Terra Nova, 21, 75–82. https://doi.org/10.1111/j.1365‐3121.2008.00857.x
    [Google Scholar]
  19. Barbero, L., Jabaloy, A., Gómez‐Ortiz, D., Pérez‐Peña, J. V., Rodríguez‐Peces, M. J., Tejero, R., Estupiñán, J., Azdimousa, A., Vázquez, M., & Asebriy, L. (2011). Evidence for surface uplift of the Atlas Mountains and the surrounding peripheral plateaux: Combining apatite fission‐track results and geomorphic indicators in the Western Moroccan Meseta (coastal Variscan Paleozoic basement). Tectonophysics, 502, 90–104. https://doi.org/10.1016/j.tecto.2010.01.005
    [Google Scholar]
  20. Barbero, L., Teixell, A., Arboleya, M.‐L., Río, P. D., Reiners, P. W., & Bougadir, B. (2007). Jurassic‐to‐present thermal history of the central High Atlas (Morocco) assessed by low‐temperature thermochronology. Terra Nova, 19, 58–64. https://doi.org/10.1111/j.1365‐3121.2006.00715.x
    [Google Scholar]
  21. Baudon, C., Fabuel‐Perez, I., & Redfern, J. (2009). Structural style and evolution of a Late Triassic rift basin in the Central High Atlas, Morocco: Controls on sediment deposition. Geological Journal, 44, 677–691. https://doi.org/10.1002/gj.1195
    [Google Scholar]
  22. Baudon, C., Redfern, J., & Van Den Driessche, J. (2012). Permo‐Triassic structural evolution of the Argana Valley, impact of the Atlantic rifting in the High Atlas, Morocco. Journal of African Earth Sciences, 65, 91–104. https://doi.org/10.1016/j.jafrearsci.2012.02.002
    [Google Scholar]
  23. Beauvais, L. (1986). Monographie des madréporaires du Jurassique inférieur du Maroc. Palaeontographica, 194, 1–68.
    [Google Scholar]
  24. Benest, M. (1985). Evolution de la plate‐forme de l'Ouest algérien et du Nord‐Ouest marocain au cours du Jurassique supérieur et au début du Crétacé. Stratigraphic, milieux de depot et dynamique sedimentaire: Documents du Laboratoire de Geologie de Lyon, 95, 581.
  25. Benvenuti, M., Moratti, G., & Algouti, A. (2017). Stratigraphic and structural revision of the Upper Mesozoic succession of the Dadès valley, eastern Ouarzazate Basin (Morocco). Journal of African Earth Sciences, 135, 1–45. https://doi.org/10.1016/j.jafrearsci.2017.01.018
    [Google Scholar]
  26. Benyoucef, M., Malti, F.‐Z., Adaci, M., Fellah, A. H., Abbache, A., Cherif, A., Sidhoum, R., & Bensalah, M. (2015). Évolution lithostratigraphique, paléoenvironnementale et paléogéographique du flysch de Ben‐Zireg (Viséen inférieur, Algérie). Geodiversitas, 37, 5–29. https://doi.org/10.5252/g2015n1a1
    [Google Scholar]
  27. Benzaggagh, M. (2016). Tholeitic basalts and ophiolitic complexes of the Mesorif Zone (External Rif, Morocco) at the Jurassic‐Cretaceous boundary and the importance of the Ouerrha Accident in the palaeogeographic and geodynamic evolution of the Rif Mountains. Boletín Geológico Y Minero, 127, 389–406.
    [Google Scholar]
  28. Benzaggagh, M., Latil, J.‐L., Oumhamed, M., & Ferré, B. (2017). Stratigraphic succession (Albian to lower? Cenomanian) and upper Albian ammonites and biozones from the Talerhza Basin (South Riffian Ridges, northern Morocco). Cretaceous Research, 73, 71–90. https://doi.org/10.1016/j.cretres.2017.01.005
    [Google Scholar]
  29. Bertotti, G., & Gouiza, M. (2012). Post‐rift vertical movements and horizontal deformations in the eastern margin of the Central Atlantic: Middle Jurassic to Early Cretaceous evolution of Morocco. International Journal of Earth Sciences, 101, 2151–2165. https://doi.org/10.1007/s00531‐012‐0773‐4
    [Google Scholar]
  30. Best, M. W., & Boekschoten, G. J. (1981). On the coral fauna in the Miocene reef at Baixo, Porto Santo (Eastern Atlantic). Netherlands Journal of Zoology, 32, 412–418.
    [Google Scholar]
  31. Bhattacharya, J. P., Copeland, P., Lawton, T. F., & Holbrook, J. (2016). Estimation of source area, river paleo‐discharge, paleoslope, and sediment budgets of linked deep‐time depositional systems and implications for hydrocarbon potential. Earth‐Science Reviews, 153, 77–110. https://doi.org/10.1016/j.earscirev.2015.10.013
    [Google Scholar]
  32. Blain, H.‐A., Sesé, C., Rubio‐Jara, S., Panera, J., Uribelarrea, D., & Pérez‐González, A. (2013). Reconstitution paléoenvironnementale et paléoclimatique du Pléistocène supérieur ancien (MIS 5a) dans le Centre de l’Espagne: Les petits vertébrés (Amphibia, Reptilia and Mammalia) des gisements de HAT et PRERESA (Sud‐est de Madrid). Revue De L‘association Française Pour L’étude Du Quaternaire, 24, 191–205. https://doi.org/10.4000/quaternaire.6604
    [Google Scholar]
  33. Boleli, E. (1952). Plateau des phosphates ‘’hydrogéologie du Maroc’’: Notes et Mémoires du Service Géologique du Maroc. Vol. 77, 197–204.
  34. Bourillot, R., Neige, P., Pierre, A., & Durlet, C. (2008). Early‐Middle Jurassic Lytoceratid Ammonites with constrictions from Morocco: Palaeobiogeographical and evolutionary implications. Palaeontology, 51, 597–609. https://doi.org/10.1111/j.1475‐4983.2008.00766.x
    [Google Scholar]
  35. Bridwell, R. J. (1976). Lithospheric thinning and the late Cenozoic thermal and tectonic regime of the northern Rio Grande rift: New Mexico Geological Society Field Conference, 27, Vermq’o Park.
  36. Broutin, J., Aassoumi, H., El Wartiti, M., Freytet, P., Kerp, H., Quesada, C., & Toutin‐Morin, N. (1998). The Permian basins of Tiddas, Bou Achouch and Khenifra (Central Morocco). Biostratigraphic and palaeophytogeographic implications. Mémoires Du Muséum National D’histoire Naturelle, 179, 257–278.
    [Google Scholar]
  37. Broutin, J., Ferrandini, J., & Saber, H. (1989). Implications stratigraphiques et paléogéographiques de la découverte d'une flore permienne euraméricaine dans le Haut‐Atlas occidental (Maroc). Comptes rendus de l‘Académie des sciences, Vol. 308 (pp. 1509–1514).
  38. Brown, R. H. (1980). Triassic rocks of Argana Valley, southern Morocco, and their regional structural implications. AAPG Bulletin, 64, 988–1003.
    [Google Scholar]
  39. Casini, L., Cuccuru, S., Puccini, A., Oggiano, G., & Rossi, P. (2015). Evolution of the corsica‐sardinia batholith and late‐orogenic shearing of the variscides. Tectonophysics, 646, 65–78. https://doi.org/10.1016/j.tecto.2015.01.017
    [Google Scholar]
  40. Cavin, L., Tong, H., Boudad, L., Meister, C., Piuz, A., Tabouelle, J., Aarab, M., Amiot, R., Buffetaut, E., Dyke, G., Hua, S., & Le Loeuff, J. (2010). Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview. Journal of African Earth Sciences, 57, 391–412. https://doi.org/10.1016/j.jafrearsci.2009.12.007
    [Google Scholar]
  41. Chalouan, A., Michard, A., Kadiri El, K., Negro, F., de Lamotte, D. F., Soto, J. I., & Saddiqi, O. (2008). The Rif Belt. In: Continental Evolution: The Geology of Morocco. Springer. 203–302.
  42. Charrière, A., & Haddoumi, H. (2016). Les «Couches rouges» continentales jurassico‐crétacées des Atlas marocains (Moyen Atlas, Haut Atlas central et oriental): Bilan stratigraphique, paléogéographies successives et cadre géodynamique. Boletín Geológico Y Minero, 127, 407–430.
    [Google Scholar]
  43. Charton, R. (2018). Phanerozoic Vertical Movements in Morocco. PhD Thesis, TUDelft, 165. https://doi.org/10.4233/uuid:fda35870‐18d9‐4ca3‐9443‐199a1dcb0250
  44. Charton, R., Bertotti, G., Arantegui, A., & Bulot, L. (2018). The Sidi Ifni transect across the rifted margin of Morocco (Central Atlantic): Vertical movements constrained by low‐temperature thermochronology. Journal of African Earth Sciences, 141, 22–32. https://doi.org/10.1016/j.jafrearsci.2018.01.006
    [Google Scholar]
  45. Chevalier, J. P., & Choubert, G. (1962). Les madréporaires miocènes du Maroc. Éditions du Service géologique du Maroc, 173, p. 1–74.
  46. Chopin, F., Corsini, M., Schulmann, K., El Houicha, M., Ghienne, J.‐F., & Edel, J.‐B. (2014). Tectonic evolution of the Rehamna metamorphic dome (Morocco) in the context of the Alleghanian‐Variscan orogeny. Tectonics, 33, 1154–1177. https://doi.org/10.1002/2014TC003539
    [Google Scholar]
  47. Choubert, G., Faure‐Muret, A., & Hottinger, L. (1966). Aperçu géologique du bassin côtier de Tarfaya: Editions du Service géologique du Maroc (p. 285).
  48. Clift, P. D., Dewey, J. F., Draut, A. E., Chew, D. M., Mange, M., & Ryan, P. D. (2004). Rapid tectonic exhumation, detachment faulting and orogenic collapse in the Caledonides of western Ireland. Tectonophysics, 384, 91–113. https://doi.org/10.1016/j.tecto.2004.03.009
    [Google Scholar]
  49. Cloetingh, S., & Burov, E. (2011). Lithospheric folding and sedimentary basin evolution: A review and analysis of formation mechanisms. Basin Research, 23, 257–290. https://doi.org/10.1111/j.1365‐2117.2010.00490.x
    [Google Scholar]
  50. Collier, J. S., McDermott, C., Warner, G., Gyori, N., Schnabel, M., McDermott, K., & Horn, B. W. (2017). New constraints on the age and style of continental breakup in the South Atlantic from magnetic anomaly data. Earth and Planetary Science Letters, 477, 27–40. https://doi.org/10.1016/j.epsl.2017.08.007
    [Google Scholar]
  51. Dartevelle, E., & Schwetz, J. (1937). Mollusques récoltés dans le Bas‐Congo. Annales De La Société Royale Zoologique De Belgique, 68, 49–65.
    [Google Scholar]
  52. Davies, J. H. F. L., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., & Schaltegger, U. (2017). End‐Triassic mass extinction started by intrusive CAMP activity: Nature. Communications, 8, 15596. https://doi.org/10.1038/ncomms15596
    [Google Scholar]
  53. Davison, I. (2005). Central Atlantic margin basins of North West Africa: Geology and hydrocarbon potential (Morocco to Guinea). Journal of African Earth Sciences, 43, 254–274. https://doi.org/10.1016/j.jafrearsci.2005.07.018
    [Google Scholar]
  54. Dhondt, A. V., Malchus, N., Boumaza, L., & Jaillard, E. (1999). Cretaceous Oysters from North Africa: Origin and Distribution. Bulletin De La Société Géologique De France, 170, 67–76.
    [Google Scholar]
  55. Domenech, M. (2015). Rift opening and inversion in the Marrakech High Atlas: integrated structural and thermochronologic study. Universitat Autònoma de Barcelona, Ph.D. Thesis, 157.
  56. Domènech, M., Stockli, D., & Teixell, A. (2018). Detrital zircon U‐Pb provenance and paleogeography of Triassic rift basins in the Marrakech High Atlas. Terra Nova, 30, 310–318. https://doi.org/10.1111/ter.12340
    [Google Scholar]
  57. Domènech, M., Teixell, A., & Stöckli, D. F. (2016). Magnitude of rift‐related burial and orogenic contraction in the Marrakech High Atlas revealed by zircon (U‐Th)/He thermochronology and thermal modeling. Tectonics, 35, 2609–2635. https://doi.org/10.1002/2016TC004283
    [Google Scholar]
  58. Doubinger, J. (1956). Contribution à l'étude des flores autuno‐stéphaniennes. Société Géologique De France, 35, 1–180.
    [Google Scholar]
  59. Duval‐Arnould, A. (2019). Controls on stratigraphic development of shelf margin carbonates. Jurassic Atlantic margin – Essaouira‐Agadir Basin, Western Morocco: PhD Thesis, University of Manchester, 287.
  60. Echarfaoui, H., Hafid, M., Salem, A. Aı̈T., & Abderrahmane, Aı̈T. F. (2002). Analyse sismo‐stratigraphique du bassin d'Abda (Maroc occidental), exemple de structures inverses pendant le rifting atlantique. Comptes Rendus Geoscience, 334, 371–377. https://doi.org/10.1016/S1631‐0713(02)01768‐6
    [Google Scholar]
  61. Ehlers, T. A. (2005). Crustal thermal processes and the interpretation of thermochronometer data. Reviews in Mineralogy and Geochemistry, 58, 315–350. https://doi.org/10.2138/rmg.2005.58.12
    [Google Scholar]
  62. El Harfi, A., Lang, J., Salomon, J., & Chellai, E. (2001). Cenozoic sedimentary dynamics of the Ouarzazate foreland basin (Central High Atlas Mountains, Morocco). International Journal of Earth Sciences, 90, 393–411. https://doi.org/10.1007/s005310000115
    [Google Scholar]
  63. El Jorfi, L., Süss, M. P., Aigner, T., & Mhammdi, N. (2015). Triassic – quaternary sequence stratigraphy of the tarfaya basin (moroccan Atlantic): structural evolution, eustasy and sedimentation. Journal of Petroleum Geology, 38, 77–98. https://doi.org/10.1111/jpg.12599
    [Google Scholar]
  64. El Haimer, F. Z. (2014). Mouvements verticaux post‐Varisques des domaines Mesetien et Atlasique: Thermochronology basse température sur apatite et zircon. Université Hassan II, Ph.D. Thesis, 124 p.
  65. Ellero, A., Malusà, M. G., Ottria, G., Ouanaimi, H., & Froitzheim, N. (2020). Transpressional structuring of the High Atlas belt, Morocco. Journal of Structural Geology, 135, 104021. https://doi.org/10.1016/j.jsg.2020.104021
    [Google Scholar]
  66. Ellouz, N., Patriat, M., Gaulier, J.‐M., Bouatmani, R., & Sabounji, S. (2003). From rifting to Alpine inversion: Mesozoic and Cenozoic subsidence history of some Moroccan basins. Sedimentary Geology, 156, 185–212. https://doi.org/10.1016/S0037‐0738(02)00288‐9
    [Google Scholar]
  67. England, P., & Molnar, P. (1990). Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18(12), 1173–1177. https://doi.org/10.1130/0091‐7613(1990)018<1173:SUUORA>2.3.CO;2
    [Google Scholar]
  68. Ennouchi, E. (1954). La faune néolithique de Toulkine (Haut Atlas): Comptes rendus des séances mensuelles de la société des sciences naturelles et physiques du Maroc, Vol. 20 (pp. 140–141).
  69. Essafraoui, B., Ferry, S., Groshény, D., Içame, N., El Aouli, H., Masrour, M., Bulot, L. G., Géraud, Y., & Aoutem, M. (2015). Sequence stratigraphic architecture of marine to fluvial deposits across a passive margin (Cenomanian, Atlantic margin, Morocco, Agadir transect). Carnets de géologie. https://doi.org/10.4267/2042/56909
  70. Ettachfini, M., Rey, J., Taj‐Eddine, K., & Tavera, J. M. (1998). The Valanginian of the Safi Basin (Atlantic Morocco) and its ammonite fauna. Palaeobiogeographical Implications: Comptes Rendus De L'académie Des Sciences, 5, 319–325.
    [Google Scholar]
  71. Fabre, J., Arnaud‐Vanneau, A., Belhadj, Z., & Monod, T. (1996). Evolution des terrains méso‐cénozoïques d’une marge à l’autre du craton ouest africain, entre le Tanezrouft (Algérie) et l’Adrar de Mauritanie. Mémoires Du Service Géologique De L’algérie, 8, 187–229.
    [Google Scholar]
  72. Fabuel‐Perez, I., Redfern, J., & Hodgetts, D. (2009). Sedimentology of an intra‐montane rift‐controlled fluvial dominated succession: The Upper Triassic Oukaimeden Sandstone Formation. Central High Atlas, Morocco: Sedimentary Geology, 218, 103–140. https://doi.org/10.1016/j.sedgeo.2009.04.006
    [Google Scholar]
  73. Feroni, A. C., Ellero, A., Malusa, M. G., Musumeci, G., Ottria, G., Polino, R., & Leoni, L. (2010). Transpressional tectonics and nappe stacking along the Southern Variscan Front of Morocco. International Journal of Earth Sciences, 99, 1111–1122. https://doi.org/10.1007/s00531‐009‐0449‐x
    [Google Scholar]
  74. Fetah, M., Bensaid, M., & Dahmani, M. (1990). Carte Géologique du Maroc. Zawyat Ahancal (1∶100,000): Ministere de l’Energie et des Mines.
  75. Fiechtner, L., Friedrichsen, H., & Hammerschmidt, K. (1992). Geochemistry and geochronology of early mesozoic tholeiites from central Morocco. Geologische Rundschau, 81, 45–62. https://doi.org/10.1007/BF01764538
    [Google Scholar]
  76. Flowers, R. M., & Ehlers, T. A. (2018). Rock erodibility and the interpretation of low‐temperature thermochronologic data. Earth and Planetary Science Letters, 482, 312–323. https://doi.org/10.1016/j.epsl.2017.11.018
    [Google Scholar]
  77. Frizon de Lamotte, D., Crespo‐Blanc, A., Saint‐Bézar, B., Comas, M., Fernandez, M., Zeyen, H., Ayarza, P., Robert‐Charrue, C., Chalouan, A., & Zizi, M. (2004). TRANSMED Transect I: Iberian Meseta‐Guadalquivir Basin–Betic Cordillera‐Alboran Sea–Rif–Moroccan Meseta‐High Atlas–Sahara Platform. In: The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle, Springer, p. 141.
  78. Frizon de Lamotte, D., Fourdan, B., Leleu, S., Leparmentier, F., & de Clarens, P. (2015). Style of rifting and the stages of Pangea breakup. Tectonics, 34, 1009–1029. https://doi.org/10.1002/2014TC003760
    [Google Scholar]
  79. Frizon de Lamotte, D., Leturmy, P., Missenard, Y., Khomsi, S., Ruiz, G., Saddiqi, O., Guillocheau, F., & Michard, A. (2009). Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics, 475(1), 9–28. https://doi.org/10.1016/j.tecto.2008.10.024
    [Google Scholar]
  80. Frizon de Lamotte, D., Raulin, C., Mouchot, N., Wrobel‐Daveau, J.‐C., Blanpied, C., & Ringenbach, J.‐C. (2011). The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics, 30, TC3002. https://doi.org/10.1029/2010TC002691
    [Google Scholar]
  81. Frizon de Lamotte, D., Tavakoli‐Shirazi, S., Leturmy, P., Averbuch, O., Mouchot, N., Raulin, C., Leparmentier, F., Blanpied, C., & Ringenbach, J. C. (2013). Evidence for Late Devonian vertical movements and extensional deformation in northern Africa and Arabia: Integration in the geodynamics of the Devonian world. Tectonics, 32, 107–122. https://doi.org/10.1002/tect.20007
    [Google Scholar]
  82. Gaffney, E. S., Tong, H., & Meylan, P. A. (2006). Evolution of the side‐necked turtles: The families Bothremydidae, Euraxemydidae, and Araripemydidae. Bulletin of the American Museum of Natural History, 300, 698. https://doi.org/10.1206/0003‐0090(2006)300[1:EOTSTT]2.0.CO;2
    [Google Scholar]
  83. Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117, 2156–2202. https://doi.org/10.1029/2011JB008825
    [Google Scholar]
  84. Gallagher, K., Brown, R., & Johnson, C. (1998). Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences, 26, 519–572. https://doi.org/10.1146/annurev.earth.26.1.519
    [Google Scholar]
  85. Gallagher, K., Hawkesworth, C. J., & Mantovani, M. S. M. (1994). The denudation history of the onshore continental margin of SE Brazil inferred from apatite fission track data. Journal of Geophysical Research: Solid Earth, 99(B9), 18117–18145.
    [Google Scholar]
  86. Ghorbal, B. (2009). Mesozoic to Quaternary thermo‐tectonic evolution of Morocco (NW Africa): Vrije Universiteit Amsterdam, Ph.D. Thesis, 226 p.
  87. Ghorbal, B., Bertotti, G., Foeken, J., & Andriessen, P. (2008). Unexpected Jurassic to Neogene vertical movements in ‘stable’ parts of NW Africa revealed by low temperature geochronology. Terra Nova, 20, 355–363. https://doi.org/10.1111/j.1365‐3121.2008.00828.x
    [Google Scholar]
  88. Gimeno‐Vives, O., Mohn, G., Bosse, V., Haissen, F., Zaghloul, M. N., Atouabat, A., & Frizon de Lamotte, D. (2019). The Mesozoic margin of the Maghrebian Tethys in the Rif belt (Morocco): Evidence for polyphase rifting and related magmatic activity. Tectonics, 38, 2894–2918. https://doi.org/10.1029/2019TC005508
    [Google Scholar]
  89. Gingerich, P. D., & Zouhri, S. (2015). New fauna of archaeocete whales (Mammalia, Cetacea) from the Bartonian middle Eocene of southern Morocco. Journal of African Earth Sciences, 111, 273–286. https://doi.org/10.1016/j.jafrearsci.2015.08.006
    [Google Scholar]
  90. Girard, J. P., Eichenseer, H., Kabbej, A., & Idris, K. M. (2015). Regional Synthesis of Thermal‐Burial Regimes in the Paleozoic‐Proterozoic Series of the Taoudenni Basin, Adrar, Mauritania: Fluid Inclusion and Thermochronology Data. In International Petroleum Technology Conference. International Petroleum Technology Conference. https://doi.org/10.2523/IPTC‐18423‐MS
  91. Gomez, F., Beauchamp, W., & Barazangi, M. (2000). Role of the Atlas Mountains (northwest Africa) within the African‐Eurasian plate‐boundary zone. Geology, 28, 775–778. https://doi.org/10.1130/0091‐7613(2000)28<775:ROTAMN>2.0.CO;2
    [Google Scholar]
  92. Gouiza, M. (2011). Mesozoic source‐to‐sink systems in NW Africa: Geology of vertical movements during the birth and growth of the Moroccan rifted margin. Vrije Universiteit Amsterdam, Ph.D. Thesis, 170 p.
  93. Gouiza, M., Bertotti, G., & Andriessen, P. A. (2018). Mesozoic and Cenozoic thermal history of the Western Reguibat Shield (West African Craton). Terra Nova, 30, 135–145. https://doi.org/10.1111/ter.12318
    [Google Scholar]
  94. Gouiza, M., Bertotti, G., Charton, R., Haimoudane, K., Dunkl, I., & Anczkiewicz, A. A. (2019). New Evidence of ‘Anomalous’ Vertical Movements along the Hinterland of the Atlantic NW African Margin. Journal of Geophysical Research: Solid Earth, 124(12), 13333–13353. https://doi.org/10.1029/2019JB017914
    [Google Scholar]
  95. Gouiza, M., Bertotti, G., Hafid, M., & Cloetingh, S. A. P. L. (2010). Kinematic and thermal evolution of the Moroccan rifted continental margin: Doukkala‐High Atlas transect. Tectonics, 29(5). https://doi.org/10.1029/2009TC002464
    [Google Scholar]
  96. Gouiza, M., Charton, R., Bertotti, G., Andriessen, P., & Storms, J. E. A. (2017). Post‐Variscan evolution of the Anti‐Atlas belt of Morocco constrained from low‐temperature geochronology. International Journal of Earth Sciences, 106, 593–616. https://doi.org/10.1007/s00531‐016‐1325‐0
    [Google Scholar]
  97. Green, P. F., Japsen, P., Chalmers, J. A., Bonow, J. M., & Duddy, I. R. (2018). Post‐breakup burial and exhumation of passive continental margins: Seven propositions to inform geodynamic models. Gondwana Research, 53, 58–81. https://doi.org/10.1016/j.gr.2017.03.007
    [Google Scholar]
  98. Grimaud, J., Rouby, D., Chardon, D., & Beauvais, A. (2018). Cenozoic sediment budget of West Africa and the Niger delta. Basin Research, 30, 169–186. https://doi.org/10.1111/bre.12248
    [Google Scholar]
  99. Groune, K., Halim, M., Benmakhlouf, M., Arsalane, S., Lemee, L., & Ambles, A. (2013). Organic geochemical and mineralogical characterization of the Moroccan Rif bituminous rocks. Journal of Materials and Environmental Science, 4, 472–481.
    [Google Scholar]
  100. Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., Le Carlier de Veslud, C., & Braun, J. (2012). Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: A new method applied to the Namibia‐South Africa margin. Basin Research, 24, 3–30. https://doi.org/10.1111/j.1365‐2117.2011.00511.x
    [Google Scholar]
  101. Guimerà, J., Arboleya, M. L., & Teixell, A. (2011). Structural control on present‐day topography of a basement massif: The Central and Eastern Anti‐Atlas (Morocco). Geologica Acta: An International Earth Science Journal, 9, 55–65. https://doi.org/10.1344/105.000001643
    [Google Scholar]
  102. Guiraud, R. (1998). Mesozoic rifting and basin inversion along the northern African Tethyan margin: An overview: Geological Society. London, Special Publications, 132, 217–229. https://doi.org/10.1144/GSL.SP.1998.132.01.13
    [Google Scholar]
  103. Guiraud, R., Bosworth, W., Thierry, J., & Delplanque, A. (2005). Phanerozoic geological evolution of Northern and Central Africa: An overview. Journal of African Earth Sciences, 43, 83–143. https://doi.org/10.1016/j.jafrearsci.2005.07.017
    [Google Scholar]
  104. Haddoumi, H., Allain, R., Meslouh, S., Metais, G., Monbaron, M., Pons, D., Rage, J. C., Vullo, R., Zouhri, S., & Gheerbrant, E. (2016). Guelb el Ahmar (Bathonian, Anoual Syncline, eastern Morocco): first continental flora and fauna including mammals from the Middle Jurassic of Africa. Gondwana Research, 29(1), 290–319.
    [Google Scholar]
  105. Haddoumi, H., Charriere, A., & Mojon, P.‐O. (2010). Stratigraphie et sedimentologie des «Couches rouges» continentales du Jurassique‐Cretace du Haut Atlas central (Maroc): implications paleoogeographiques et geodynamiques. Geobios, 43, 433–451. https://doi.org/10.1016/j.geobios.2010.01.001
    [Google Scholar]
  106. Hafid, M., Zizi, M., Bally, A. W., & Ait Salem, A. (2006). Structural styles of the western onshore and offshore termination of the High Atlas, Morocco. Comptes Rendus Geoscience, 338, 50–64. https://doi.org/10.1016/j.crte.2005.10.007
    [Google Scholar]
  107. Hayford, E. K., Lisker, F., & Apaalse, L. (2008). Cretaceous rifting of the Ghana transform margin‐Evidence from on shore apatite fission track data and optimum thermal history models. Ghana Journal of Science, 48.
    [Google Scholar]
  108. Helland‐Hansen, W., Sømme, T. O., Martinsen, O. J., Lunt, I., & Thurmond, J. (2016). Deciphering earth's natural hourglasses: perspectives on source‐to‐sink analysis. Journal of Sedimentary Research, 86, 1008–1033. https://doi.org/10.2110/jsr.2016.56
    [Google Scholar]
  109. Helm, C. (2009). Quantification des flux sédimentaires anciens à l'échelle d’un continent: Le cas de l’Afrique au Méso‐Cénozoïque. Université Rennes, Ph.D. Thesis, 364 p.
  110. Herbig, H. G., & Trappe, J. (1994). Stratigraphy of the Subatlas Group (Maastrichtian‐Middle Eocene, Morocco). Newsletters on Stratigraphy, 125–165. https://doi.org/10.1127/nos/30/1994/125
    [Google Scholar]
  111. Hill, R. V., Mccartney, J. A., Roberts, E., Bouaré, M., Sissoko, F., & O’leary, M. A. (2008). Dyrosaurid (Crocodyliformes: Mesoeucrocodylia) Fossils from the Upper Cretaceous and Paleogene of Mali: Implications for Phylogeny and Survivorship across the K/T Boundary. American Museum Novitates, 3631, 1–21. https://doi.org/10.1206/598.1
    [Google Scholar]
  112. Hmich, D., Schneider, J. W., Saber, H., Voigt, S., & El Wartiti, M. (2006). New continental Carboniferous and Permian faunas of Morocco: Implications for biostratigraphy, palaeobiogeography and palaeoclimate. Geological Society, London, Special Publications, 265, 297–324. https://doi.org/10.1144/GSL.SP.2006.265.01.14
    [Google Scholar]
  113. Hollard, H., Choubert, G., Bronner, G., Marchand, J., & Sougy, J. (1985). Carte Géologique du Maroc, (1:1,000,000; 2 sheets). Notes et Mémoires du Service Géologique du Maroc.
  114. Hssaida, T., Chahidi, S., Benzaggagh, M., Riding, J. B., & Oumalch, F. (2014). Associations de kystes de dinoflagellés des séries du Jurassique supérieur (Oxfordien–Tithonien) du Rif externe (Prérif interne et Mésorif, Maroc) et comparaisons régionales. Annales De Paléontologie, 100(4), 327–342. https://doi.org/10.1016/j.annpal.2014.03.001
    [Google Scholar]
  115. Ibrahim, N., Varricchio, D. J., Sereno, P. C., Wilson, J. A., Dutheil, D. B., Martill, D. M., Baidder, L., & Zouhri, S. (2014). Dinosaur Footprints and Other Ichnofauna from the Cretaceous Kem Kem Beds of Morocco. PLoS One, 9, e90751–e90815. https://doi.org/10.1371/journal.pone.0090751
    [Google Scholar]
  116. Japsen, P., Bonow, J. M., Green, P. F., Chalmers, J. A., & Lidmar‐Bergström, K. (2006). Elevated, passive continental margins: Long‐term highs or Neogene uplifts?New Evidence from West Greenland: Earth and Planetary Science Letters, 248, 330–339. https://doi.org/10.1016/j.epsl.2006.05.036
    [Google Scholar]
  117. Japsen, P., Bonow, J. M., Green, P. F., Chalmers, J. A., & Lidmar‐Bergström, K. (2009). Formation, uplift and dissection of planation surfaces at passive continental margins ‐ a new approach. Earth Surface Processes and Landforms, 34, 683–699. https://doi.org/10.1002/esp.1766
    [Google Scholar]
  118. Japsen, P., Bonow, J. M., Green, P. F., Cobbold, P. R., Chiossi, D., Lilletveit, R., Magnavita, L. P., & Pedreira, A. (2012). Episodic burial and exhumation in NE Brazil after opening of the South Atlantic. Geological Society of America Bulletin, 124, 800–816. https://doi.org/10.1130/B30515.1
    [Google Scholar]
  119. Japsen, P., Chalmers, J. A., Green, P. F., & Bonow, J. M. (2012). Elevated, passive continental margins: Not rift shoulders, but expressions of episodic, post‐rift burial and exhumation. Global and Planetary Change, 90–91, 73–86. https://doi.org/10.1016/j.gloplacha.2011.05.004
    [Google Scholar]
  120. Japsen, P., Green, P. F., Bonow, J. M., Chalmers, J. A., & Rasmussen, E. S. (2016). Burial and exhumation history of southernmost Norway estimated from apatite fission‐track analysis data constrained by geological observations and stratigraphic landscape analysis. NGF Abstract and Proceedings, 1, 26–28.
    [Google Scholar]
  121. Japsen, P., Green, P. F., Bonow, J. M., Hinchey, A. M., & Wilton, D. H. C. (2016). Burial and exhumation history of the Labrador‐ Newfoundland margin: first observations. Geological Survey of Denmark and Greenland (GEUS) Bulletin, 35, 91–94. https://doi.org/10.34194/geusb.v35.4947
    [Google Scholar]
  122. Jelinek, A. R., Chemale, F.Jr, van der Beek, P. A., Guadagnin, F., Cupertino, J. A., & Viana, A. (2014). Denudation history and landscape evolution of the northern East‐Brazilian continental margin from apatite fission‐track thermochronology. Journal of South American Earth Sciences, 54, 158–181. https://doi.org/10.1016/j.jsames.2014.06.001
    [Google Scholar]
  123. Jenny, J., & Jossen, J. A. (1982). Découverte d’empreintes de pas de Dinosauriens dans le Jurassique inférieur (Pliensbachien) du Haut‐Atlas central (Maroc). Comptes Rendues Hébdomanaires Séances Academie De Sciences, 294, 223–226.
    [Google Scholar]
  124. Joussiaume, R. (2016). Les relations entre diapirisme et sédimentation: Exemple du Jurassique moyen de la région d'Imilchil, Haut‐Atlas central, Maroc. PhD Thesis, Universite de Bordeaux.
  125. Jouve, S., Larochene, M. O., Bouya, B., & Amaghzaz, M. (2005). A new dyrosaurid crocodyliform from the Palaeocene of Morocco and a phylogenetic analysis of Dyrosauridae. Acta Palaeontologica Polonica, 50, 1–14.
    [Google Scholar]
  126. Juez‐Larre, J., & Andriessen, P. (2006). Tectonothermal evolution of the northeastern margin of Iberia since the break‐up of Pangea to present, revealed by low‐temperature fission‐track and (U–Th)/He thermochronologyA case history of the Catalan Coastal Ranges. Earth and Planetary Science Letters, 243, 159–180. https://doi.org/10.1016/j.epsl.2005.12.026
    [Google Scholar]
  127. Kammerer, C. F., Nesbitt, S. J., & Shubin, N. H. (2011). The first silesaurid dinosauriform from the Late Triassic of Morocco. Acta Palaeontologica Polonica, 57, 277–284. https://doi.org/10.4202/app.2011.0015
    [Google Scholar]
  128. Karroum, M., Mandour El, A., Khattach, D., Cassas, A., Himi, M., Rochdane, S., Laftouhi, N.‐E., & Khalil, N. (2014). Fonctionnement hydrogéologique du bassin de la Bahira (Maroc central): Apport de l’analyse des données géologiques et gravimétriques. Canadian Journal of Earth Sciences, 51, 517–526. https://doi.org/10.1139/cjes‐2013‐0130
    [Google Scholar]
  129. Ketcham, R. A. (2005). Forward and inverse modeling of low‐temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58, 275–314. https://doi.org/10.2138/rmg.2005.58.11
    [Google Scholar]
  130. Ketcham, R. A., Donelick, R. A., & Donelick, M. B. (2000). AFTSolve: A program for multi‐kinetic modeling of apatite fission‐track data. Geological Materials Research, 2, 1–32.
    [Google Scholar]
  131. Koeniguer, J.‐C. (1967). Etude paléoxylologique du rio de oro. Notas Y Comunicaciones Insituto Geologico Y Minero De España, 96, 39–66.
    [Google Scholar]
  132. Krencker, F. N., Fantasia, A.,Danisch, J., Martindale, R., Kabiri, L., El Ouali, M., & Bodin, S. (2020). Two‐phased collapse of the shallow‐water carbonate factory during the late Pliensbachian‐Toarcian driven by changing climate and enhanced continental weathering in the Northwestern Gondwana Margin. Earth‐Science Reviews, 103254. https://www.sciencedirect.com/science/article/pii/S0012825220303007?casa_token=eps3KNGXtUoAAAAA:UO889mmTKGyZDz5c8DR6ghgF_uFwWzKQO5od6eSWW6CBoAcUhfTULAsWXkBq1qxOgduh90aLFY
    [Google Scholar]
  133. Labails, C., Olivet, J.‐L., Aslanian, D., & Roest, W. R. (2010). An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters, 297, 355–368. https://doi.org/10.1016/j.epsl.2010.06.024
    [Google Scholar]
  134. Lafforgue, L. (2016). Place de la minéralisation de manganèse de Bouarfa dans l'évolution méso‐cénozoïque de l'oriental marocain. Doctoral dissertation, Paris Saclay, 360.
  135. Lagnaoui, A., Klein, H., Saber, H., Fekkak, A., Belahmira, A., & Schneider, J. W. (2016). New discoveries of archosaur and other tetrapod footprints from the Timezgadiouine Formation (Irohalene Member, Upper Triassic) of the Argana Basin, western High Atlas, Morocco – Ichnotaxonomic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 453, 1–9. https://doi.org/10.1016/j.palaeo.2016.03.022
    [Google Scholar]
  136. Lanari, R., Fellin, M. G., Faccenna, C., Balestrieri, M. L., Pazzaglia, F. J., Youbi, N., & Maden, C. (2020). Exhumation and surface evolution of the Western High‐Atlas and surrounding regions as constrained by low‐temperature thermochronology. Tectonics, 39(3), 2019TC005562. https://doi.org/10.1029/2019TC005562
    [Google Scholar]
  137. Laville, E., & Piqué, A. (1992). Jurassic penetrative deformation and Cenozoic uplift in the central High Atlas (Morocco): a tectonic model. Structural and orogenic inversions. Geologische Rundschau, 81(1), 157–170.
    [Google Scholar]
  138. Le Roy, P., Piqué, A., Le Gall, B., Ait Brahim, L., Morabet, A. M., & Demnati, A. (1997). Les bassins cotiers triasico‐liasiques du Maroc occidental et la diachronie du rifting intra‐continental de l'Atlantique central. Bulletin De La Société Géologique De France, 168, 637–648.
    [Google Scholar]
  139. Lee, C. W. (1983). Bivalve mounds and reefs of the Central High Atlas, Morocco: palaeogeography. Palaeoclimatology, Palaeoecology, 43, 153–168. https://doi.org/10.1016/0031‐0182(83)90052‐4
    [Google Scholar]
  140. Leleu, S., Hartley, A. J., van Oosterhout, C., Kennan, L., Ruckwied, K., & Gerdes, K. (2016). Structural, stratigraphic and sedimentological characterisation of a wide rift system: The Triassic rift system of the Central Atlantic Domain. Earth Science Reviews, 158, 89–124. https://doi.org/10.1016/j.earscirev.2016.03.008
    [Google Scholar]
  141. Leprêtre, R. (2015). Evolution Phanerozoïque du Craton Ouest Africain et de ses bordures Nord et Ouest. Université Paris 11, Ph.D. Thesis, 423.
  142. Leprêtre, R., Barbarand, J., Missenard, Y., Gautheron, C., Pinna‐Jamme, R., & Saddiqi, O. (2017). Mesozoic evolution of NW Africa: Implications for the Central Atlantic Ocean dynamics. Journal of the Geological Society, 174, 817–835. https://doi.org/10.1144/jgs2016‐100
    [Google Scholar]
  143. Leprêtre, R., Barbarand, J., Missenard, Y., & Leparmentier, F. (2014). Vertical movements along the northern border of the West African Craton: The Reguibat Shield and adjacent basins. Geological Magazine, 151, 1–14.
    [Google Scholar]
  144. Leprêtre, R., Frizon de Lamotte, D., Combier, V., Gimeno‐Vives, O., Mohn, G., & Eschard, R. (2018). The Tell‐Riforogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin: BSGF. BSGF‐Earth Sciences Bulletin, 189, 10. https://doi.org/10.1051/bsgf/2018009
    [Google Scholar]
  145. Leprêtre, R., Missenard, Y., Barbarand, J., Gautheron, C., Saddiqi, O., & Pinna‐Jamme, R. (2015). Postrift history of the eastern central Atlantic passive margin: Insights from the Saharan region of South Morocco. Journal of Geophysical Research: Solid Earth, 120, 4645–4666. https://doi.org/10.1002/2014JB011549
    [Google Scholar]
  146. Leroy, M., Gueydan, F., & Dauteuil, O. (2008). Uplift and strength evolution of passive margins inferred from 2‐D conductive modelling. Geophysical Journal International, 172, 464–476. https://doi.org/10.1111/j.1365‐246X.2007.03566.x
    [Google Scholar]
  147. Logan, P., & Duddy, I. (1998). An investigation of the thermal history of the Ahnet and Reggane Basins, Central Algeria, and the consequences for hydrocarbon generation and accumulation. Geological Society, London, Special Publications, 132, 131–155. https://doi.org/10.1144/GSL.SP.1998.132.01.07
    [Google Scholar]
  148. Lorenz, J. C. (1988). Synthesis of Late Paleozoic and Triassic redbed sedimentation in Morocco. In: The Atlas System of Morocco Springer, p. 139–168.
  149. Luber, T. (2017). Integrated Analysis of Lower Cretaceous Stratigraphy and depositional systems: The Essaouira‐Agadir basin of Morocco. University of Manchester, Ph.D. Thesis, 257 p.
  150. Luth, S. W., & Willingshofer, E. (2008). Mapping of the post‐collisional cooling history of the Eastern Alps. Swiss Journal of Geosciences, 101, 207–223. https://doi.org/10.1007/s00015‐008‐1294‐9
    [Google Scholar]
  151. Mader, N. K., Redfern, J., & El Ouataoui, M. (2017). Sedimentology of the Essaouira Basin (Meskala Field) in context of regional sediment distribution patterns during upper Triassic pluvial events. Journal of African Earth Sciences, 130, 293–318. https://doi.org/10.1016/j.jafrearsci.2017.02.012
    [Google Scholar]
  152. Mahammed, F., Läng, E., Mami, L., Mekahli, L., Benhamou, M., Bouterfa, B., Kacemi, A., Chérief, S.‐A., Chaouati, H., & Taquet, P. (2005). The ‘giant of Ksour’, a Middle Jurassic sauropod dinosaur from Algeria. Comptes Rendus Palevol, 4, 707–714. https://doi.org/10.1016/j.crpv.2005.07.001
    [Google Scholar]
  153. Malaval, M. (2016). Enregistrement sédimentaire de l'activité diapirique associée à la ride du Jbel Azourki, Haut Atlas central, Maroc: impact sur la géométrie des dépôts et la distribution des faciès des systèmes carbonatés et mixtes du Jurassique inférieur. PhD Thesis, Universite Bordeaux 3.
  154. Malusà, M. G., Danisik, M., & Kuhlemann, J. (2016). Tracking the Adriatic‐slab travel beneath the Tethyan margin of Corsica‐Sardinia by low‐temperature thermochronology. Gondwana Research, 31, 135–149. https://doi.org/10.1016/j.gr.2014.12.011
    [Google Scholar]
  155. Malusà, M. G., & Fitzgerald, P. G. (2019a). Fission‐Track Thermochronology and its Application to Geology: Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham, 393 p. https://doi.org/10.1007/978‐3‐319‐89421‐8
  156. Malusà, M. G., & Fitzgerald, P. G. (2019b). From Cooling to Exhumation: Setting the Reference Frame for the Interpretation of Thermochronologic Data. In M.Malusà, & P.Fitzgerald (Eds.), Fission‐Track Thermochronology and its Application to Geology: Springer Textbooks in Earth Sciences, Geography and Environment (pp. 147–164). Springer.
    [Google Scholar]
  157. Malusà, M. G., Polino, R., Feroni, A. C., Ellero, A., Ottria, G., Baidder, L., & Musumeci, G. (2007). Post‐Variscan tectonics in eastern Anti‐Atlas (Morocco). Terra Nova, 19, 481–489. https://doi.org/10.1111/j.1365‐3121.2007.00775.x
    [Google Scholar]
  158. Mansour, E. M. (1991). Thermochronologie par la méthode des traces de fission dans l'apatite. Application aux massifs de l'Argentera‐Mercantour (Alpes occidentales) et des Jebilet (Meseta marocaine). Université Joseph‐Fourier ‐ Grenoble I, PhD Thesis, 197 p.
  159. Manspeizer, W., Puffer, J. H., & Cousminer, H. L. (1978). Separation of Morocco and eastern North America: A Triassic‐Liassic stratigraphic record. Geological Society of America Bulletin, 89, 901–920. https://doi.org/10.1130/0016‐7606(1978)89<901:SOMAEN>2.0.CO;2
    [Google Scholar]
  160. Mareschal, J. C., & Jaupart, C. (2004). Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth and Planetary Science Letters, 223, 65–77. https://doi.org/10.1016/j.epsl.2004.04.002
    [Google Scholar]
  161. Marivaux, L., Adnet, S., Benammi, M., Tabuce, R., & Benammi, M. (2017). Anomaluroid rodents from the earliest Oligocene of Dakhla, Morocco, reveal the long‐lived and morphologically conservative pattern of the Anomaluridae and Nonanomaluridae during the Tertiary in Africa. Journal of Systematic Palaeontology, 15, 539–569. https://doi.org/10.1080/14772019.2016.1206977
    [Google Scholar]
  162. Marzoli, A., Davies, J. H. F. L., Youbi, N., Merle, R., Corso, J. D., Dunkley, D. J., Fioretti, A. M., Bellieni, G., Medina, F., Wotzlaw, J.‐F., McHone, G., Font, E., & Bensalah, M. K. (2017). Proterozoic to Mesozoic evolution of North‐West Africa and Peri‐Gondwana microplates: Detrital zircon ages from Morocco and Canada. Lithos, 278, 1–44. https://doi.org/10.1016/j.lithos.2017.01.016
    [Google Scholar]
  163. Matton, G., & Jébrak, M. (2009). The Cretaceous Peri‐Atlantic Alkaline Pulse (PAAP): Deep mantle plume origin or shallow lithospheric break‐up?Tectonophysics, 469, 1–12. https://doi.org/10.1016/j.tecto.2009.01.001
    [Google Scholar]
  164. Mazzoli, S., Jankowski, L., Szaniawski, R., & Zattin, M. (2010). Low‐T thermochronometric evidence for post‐thrusting (<11 Ma) exhumation in the Western Outer Carpathians, Poland. Comptes Rendus Geoscience, 342, 162–169. https://doi.org/10.1016/j.crte.2009.11.001
    [Google Scholar]
  165. Meister, C., Piuz, A., Cavin, L., Boudad, L., Bacchia, F., Ettachfini, E. M., & Benyoucef, M. (2017). Late Cretaceous (Cenomanian‐Turonian) ammonites from southern Morocco and south western Algeria. Arabian Journal of Geosciences, 10(1), 1. https://doi.org/10.1007/s12517‐016‐2714‐1
    [Google Scholar]
  166. Mekahli, L., Elmi, S., & Benhamou, M. (2004). Biostratigraphy, sedimentology and tectono‐eustatic events of the Lower and Middle Jurassic of the Ksour Mountains (Western Saharian Atlas, Southern Algeria). International Geological Congress, 32, Florence.
    [Google Scholar]
  167. Merino‐Tomé, Ó., Della Porta, G., Pierre, A., Kenter, J. A. M., Durlet, C., & Verwer, K. (2017). Intact seismic‐scale platforms and ramps in the Lower to Middle Jurassic of Morocco: Implications for stratal anatomy and lithofacies partitioning. AAPG Bulletin, 101, 205–513. https://doi.org/10.1306/011817DIG17029
    [Google Scholar]
  168. Michard, A., Ibouh, H., & Charrière, A. (2011). Syncline‐topped anticlinal ridges from the High Atlas: A Moroccan conundrum, and inspiring structures from the Syrian Arc, Israel. Terra Nova, 23, 314–323. https://doi.org/10.1111/j.1365‐3121.2011.01016.x
    [Google Scholar]
  169. Michard, A., Saddiqi, O., Chalouan, A., & de Lamotte, D. F. (2008). Continental Evolution: The Geology of Morocco. Springe, 424 p.
  170. Michard, A., Soulaimani, A., Hoepffner, C., Ouanaimi, H., Baidder, L., Rjimati, E. C., & Saddiqi, O. (2010). The South‐Western Branch of the Variscan Belt: Evidence from Morocco. Tectonophysics, 492, 1–24. 0.1016/j.tecto.2010.05.021
    [Google Scholar]
  171. Middlemiss, F. A. (1980). Lower Cretaceous Terebratulidae from south‐western Morocco and their biogeography. Palaeontology, 23, 515–556.
    [Google Scholar]
  172. Miles, P., Bouysse, P., & De Souza, K. (2012). Structural Map of the Atlantic Ocean, CCGM‐CGMW.
  173. Missenard, Y. (2006). Le relief des Atlas Marocains: Contribution des processus asthénosphériques et du raccourcissement crustal, aspects chronologiques. Université de Cergy Pontoise, Ph.D. Thesis, 236 p.
  174. Missenard, Y., & Cadoux, A. (2011). Can Moroccan Atlas lithospheric thinning and volcanism be induced by Edge‐Driven Convection?Terra Nova, 24, 27–33. https://doi.org/10.1111/j.1365‐3121.2011.01033.x
    [Google Scholar]
  175. Monbaron, M. (1978). New Occurrences Of Big Dinosaurian Bones In The Jurassic‐Cretaceous Basin Of Taguelft (Atlas Of Beni‐mellal, Morocco). Comptes Rendus Hebdomadaires Des Seances De L’academie Des Sciences, 287, 1277–1279.
    [Google Scholar]
  176. Monbaron, M., & Taquet, P. (1981). Découverte du squelette complet d’un grand Cétiosaure (Dinosaure Sauropode) dans le bassin jurassique moyen de Tilougguit (Haut‐Atlas central, Maroc). Compte Rendu De L’academie Des Sciences De Paris, 292, 243–246.
    [Google Scholar]
  177. Montero, P., Haissen, F., Mouttaqi, A., Molina, J. F., Errami, A., Sadki, O., Cambeses, A., & Bea, F. (2016). Contrasting SHRIMP U‐Pb zircon ages of two carbonatite complexes from the peri‐cratonic terranes of the reguibat shield: Implications for the lateral extension of the West African craton. Gondwana Research, 38, 238–250. https://doi.org/10.1016/j.gr.2015.12.005
    [Google Scholar]
  178. Moragas, M., Vergés, J., Saura, E., Martín‐Martín, J., Messager, G., Merino‐Tomé, Ó., Suárez‐Ruiz, I., Razin, P., Grélaud, C., Malaval, M., Joussiaume, R., & Hunt, D. W. (2018). Jurassic rifting to post‐rift subsidence analysis in the Central High Atlas and its relation to salt diapirism. Basin Research, 30, 336–362. https://doi.org/10.1111/bre.12223
    [Google Scholar]
  179. Mourlot, Y., Roddaz, M., Dera, G., Calvès, G., Kim, J.‐H., Chaboureau, A.‐C., Mounic, S., & Raisson, F. (2018). Geochemical evidence for large‐scale drainage reorganization in Northwest Africa during the Cretaceous. Geochemistry, Geophysics, Geosystems, 19, 1690–1712. https://doi.org/10.1029/2018GC007448
    [Google Scholar]
  180. Mulder, E. W., Bardet, N., Godefroit, P., & Jagt, J. W. (2000). Elasmosaur remains from the Maastrichtian type area, and a review of latest Cretaceous elasmosaurs (Reptilia, Plesiosauroidea): Bulletin de l’Institut royal des Sciences naturelles de Belgique, Vol. 70 (pp. 161–178).
    [Google Scholar]
  181. Najih, A., Montero, P., Verati, C., Charaf Chabou, M., Fekkak, A., Baidder, L., Ezzouhairi, H., Bea, F., & Michard, A. (2019). Initial Pangean rifting north of the West African Craton: Insights from late Permian U‐Pb and 40Ar/39Ar dating of alkaline magmatism from the Eastern Anti‐Atlas (Morocco). Journal of Geodynamics, 132, 101670. https://doi.org/10.1016/j.jog.2019.101670
    [Google Scholar]
  182. Nemčok, M., Stuart, C., Segall, M. P., & Allen, R. B. (2005). Structural development of southern Morocco: Interaction of tectonics and deposition. Annual Bob F. Perkins Research Conference, 25, Houston. 151–202.
  183. Nouri, J., Díaz‐Martínez, I., & Pérez‐Lorente, F. (2011). Tetradactyl Footprints of an Unknown Affinity Theropod Dinosaur from the Upper Jurassic of Morocco (C. Lalueza‐Fox, Ed.). PLoS One, 6, e26882–e26887. https://doi.org/10.1371/journal.pone.0026882
    [Google Scholar]
  184. Ouajhain, B., Daoudi, L., Laduron, D., Rocha, F., & Naud, J. (2011). Jurassic Clay Mineral Sedimentation Control Factors in the Essaouira Basin (Western High Atlas, Morocco). Geologica Belgica, 14, 129–141.
    [Google Scholar]
  185. Oujidi, M., & Elmi, S. (2000). Evolution de l'architecture des monts d'Oujda (Maroc oriental) pendant le Trias et au debut du Jurassique. Bulletin De La Société Géologique De France, 171, 169–179. https://doi.org/10.2113/171.2.169
    [Google Scholar]
  186. Oukassou, M., Charrière, A., Lagnaoui, A., Gibb, S., Michard, A., & Saddiqi, O. (2016). First occurrence of the Ichnogenus Selenichnites from the Middle Jurassic Strata of the Skoura Syncline (Middle Atlas, Morocco). Palaeoecological and Palaeoenvironmental Context: Comptes Rendus Palevol, 15, 461–471. https://doi.org/10.1016/j.crpv.2015.09.013
    [Google Scholar]
  187. Oukassou, M., Saddiqi, O., Barbarand, J., Sebti, S., Baidder, L., & Michard, A. (2013). Post‐Variscan exhumation of the Central Anti‐Atlas (Morocco) constrained by zircon and apatite fission‐track thermochronology. Terra Nova, 25, 151–159. https://doi.org/10.1111/ter.12019
    [Google Scholar]
  188. Ourribane, M., Chellai, E. H., & Zaghbib‐Turki, D. (2000). Rôle des microbialites et des «micro‐encroûtants» dans la lithification récifale: Exemples du Jurassique supérieur de l'Atlas maghrébin (Maroc et Tunisie). Comptes Rendus De L'académie Des Sciences, 330, 407–414. https://doi.org/10.1016/S1251‐8050(00)00157‐9
    [Google Scholar]
  189. Pagel, M., Barbarand, J., Beaufort, D., Gautheron, C., & Pironon, J. (2014). Bassins sédimentaires Les marqueurs de leur histoire thermique. Ed Sciences, Société Géologique de France (p. 226).
  190. Perez, N. D., Teixell, A., Gómez‐Gras, D., & Stockli, D. F. (2019). Reconstructing extensional basin architecture and provenance in the Marrakech High Atlas of Morocco: Implications for rift basins and inversion tectonics. Tectonics, 38(5), 1584–1608. https://doi.org/10.1029/2018TC005413
    [Google Scholar]
  191. Piqué, A., Soulaimani, A., Laville, E., Amrhar, M., Bouabdelli, M., Hoepffner, C., & Chalouan, A. (2006). Géologie du Maroc: Editions Geode. 287 p
  192. Pratt, J. R., Barbeau, D. L.Jr, Garver, J. I., Emran, A., & Izykowski, T. M. (2015). Detrital Zircon Geochronology of Mesozoic Sediments in the Rif and Middle Atlas Belts of Morocco: Provenance Constraints and Refinement of the West African Signature. The Journal of Geology, 123, 177–200. https://doi.org/10.1086/681218
    [Google Scholar]
  193. Rage, J.‐C. (1976). Les Squamates du Miocène de Beni Mella, Maroc. Géologie Méditerranéenne, 3, 57–69.
    [Google Scholar]
  194. Rage, J.‐C., & Wouters, G. (1979). Découverte du plus ancien Palaeopheidé (Reptilia, Serpentes) dans le Maestrichtien du Maroc. Geobios, 12, 293–296.
    [Google Scholar]
  195. Ranke, U., & von Rad, U., Wissmann, G.(1982). Stratigraphy, Facies and Tectonic Development of the On‐ and Offshore Aaiun‐Tarfaya Basin — A Review. In: Geology of the Northwest African Continental Margin, Springer. 86–105.
  196. Romagny, A., Münch, P., Cornée, J. J., Corsini, M., Azdimousa, A., Melinte‐Dobrinescu, M. C., Drinia, H., Bonno, M., Arnaud, N., Monié, P., Quillévéré, F., & Ben Moussa, A. (2014). Late Miocene to present‐day exhumation and uplift of the Internal Zone of the Rif chain: Insights from low‐temperature thermochronometry and basin analysis. Journal of Geodynamics, 77, 39–55. https://doi.org/10.1016/j.jog.2014.01.006
    [Google Scholar]
  197. Ruiz, G. M. H., Sebti, S., Negro, F., Saddiqi, O., Frizon de Lamotte, D., Stockli, D., Foeken, J., Stuart, F., Barbarand, J., & Schaer, J. P. (2011). From central Atlantic continental rift to Neogene uplift ‐ western Anti‐Atlas (Morocco). Terra Nova, 23, 35–41. https://doi.org/10.1111/j.1365‐3121.2010.00980.x
    [Google Scholar]
  198. Sabil, N. (1995). La datation par traces de fission: Aspects méthodologiques et applications thermochronologiques en contexte alpin et de marge continentale. Université de Grenoble, Ph.D. Thesis, 245 p.
  199. Saddiqi, O., El Haimer, F.‐Z., Michard, A., Barbarand, J., Ruiz, G., Mansour, E. M., Leturmy, P., & Frizon de Lamotte, D. (2009). Apatite fission‐track analyses on basement granites from south‐western Meseta, Morocco: Paleogeographic implications and interpretation of AFT age discrepancies. Tectonophysics, 475, 29–37. https://doi.org/10.1016/j.tecto.2009.01.007
    [Google Scholar]
  200. Saint‐Martin, J.‐P. (1990). Les formations récifales coralliennes du Miocène supérieur d'Algérie et du Maroc. Mémoires Du Muséum National D’histoires Naturelles De Paris, 56, 1–373.
    [Google Scholar]
  201. Samaka, F., & Bouhaddioui, D. (2003). Evaluation du Potentiel Petrolier du Bassin de Souss et de l‘Offshore d’Agadir. ONHYM, Rapport inédit, 34 p.
  202. Sanders, M. T., Bardin, J., Benzaggagh, M., & Cecca, F. (2015). Early Toarcian (Jurassic) belemnites from northeastern Gondwana (South Riffian ridges, Morocco). Paläontologische Zeitschrift, 89, 51–62. https://doi.org/10.1007/s12542‐013‐0214‐0
    [Google Scholar]
  203. Scotese, C. R. (2012). The Paleomap Project. www.scotese.com
  204. Sebti, S. (2011). Mouvements verticaux de l’Anti‐Atlas occidental marocain (Kerdous and Ifni). Thermochronologie par traces de fission: Université Hassan II, Ph.D. Thesis, 172 p.
  205. Sebti, S., Saddiqi, O., El Haimer, F. Z., Michard, A., Ruiz, G., Bousquet, R., & de Lamotte, D. F. (2009). Vertical movements at the fringe of the West African Craton: First zircon fission track datings from the Anti‐Atlas Precambrian basement, Morocco. Comptes Rendus Geoscience, 341(1), 71–77.
    [Google Scholar]
  206. Sehrt, M. (2014). Variscan to Neogene long‐term landscape evolution at the Moroccan passive continental margin (Tarfaya Basin and western Anti‐Atlas). University of Heidelberg, Ph.D. Thesis, 174 p.
  207. Sehrt, M., Glasmacher, U. A., Stockli, D. F., Jabour, H., & Kluth, O. (2017a). The southern Moroccan passive continental margin: An example of differentiated long‐term landscape evolution in Gondwana. Gondwana Research, 53, 129–144. https://doi.org/10.1016/j.gr.2017.03.013
    [Google Scholar]
  208. Sehrt, M., Glasmacher, U. A., Stockli, D. F., Jabour, H., & Kluth, O. (2017b). Meso‐/Cenozoic long‐term landscape evolution at the southern Moroccan passive continental margin, Tarfaya Basin, recorded by low‐temperature thermochronology. Tectonophysics, 717, 499–518. https://doi.org/10.1016/j.tecto.2017.08.028
    [Google Scholar]
  209. Şengör, A. M. C., Özeren, S., Genç, T., & Zor, E. (2003). East Anatolian high plateau as a mantle‐supported, north‐south shortened domal structure. Geophysical Research Letters, 30(24). https://doi.org/10.1029/2003GL017858
    [Google Scholar]
  210. Serge, E. L. M. I., Marok, A., Sebane, A., & Almeras, Y. (2009). Importance of the Mellala section (Traras Mountains, northwestern Algeria) for the correlation of the Pliensbachian‐Toarcian boundary. Volumina Jurassica, 7(1), 37–46.
    [Google Scholar]
  211. Sibuet, J.‐C., Rouzo, S., Srivastava, S., Dehler, S., Deptuck, M., & Karim, A. (2012). Plate tectonic reconstructions and paleogeographic maps of the central and North Atlantic oceans. Canadian Journal of Earth Sciences, 49, 1395–1415. https://doi.org/10.1139/e2012‐071
    [Google Scholar]
  212. Sloss, L. L., & Scherer, W. (1975) Geometry of Sedimentary Basins: Applications to Devonian of North America and Europe. In: Whitten, E.H.T. Quantitative Studies in the Geological Sciences. Geological Society of America Memoir, 142, 71–88. https://doi.org/10.1130/MEM142‐p71
    [Google Scholar]
  213. Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196, 17–33. https://doi.org/10.1016/S0012‐821X(01)00588‐X
    [Google Scholar]
  214. Steiner, C., Hobson, A., Favre, P., Stampfli, G. M., & Hernandez, J. (1998). Mesozoic sequence of Fuerteventura (Canary Islands): Witness of Early Jurassic sea‐floor spreading in the central Atlantic. Geological Society of America Bulletin, 110, 1304–1317. https://doi.org/10.1130/0016‐7606(1998)110<1304:MSOFCI>2.3.CO;2
    [Google Scholar]
  215. Stets, J. (1992). Mid‐Jurassic events in the western High Atlas (Morocco). Geologische Rundschau, 81, 69–84. https://doi.org/10.1007/BF01764540
    [Google Scholar]
  216. Tabuce, R., Adnet, S., Cappetta, H., Noubhani, A., & Quillevere, F. (2005). Aznag (Ouarzazate basin, Morocco), a new African middle Eocene (Lutetian) vertebrate‐bearing locality with selachians and mammals. Bulletin De La Société Géologique De France, 176, 381–400. https://doi.org/10.2113/176.4.381
    [Google Scholar]
  217. Tari, G., & Jabour, H. (2013). Salt tectonics along the Atlantic margin of Morocco. Geological Society, London, Special Publications, 369, 337–353. https://doi.org/10.1144/SP369.23
    [Google Scholar]
  218. Teixell, A., Ayarza, P., Zeyen, H., Fernandez, M., & Arboleya, M.‐L. (2005). Effects of mantle upwelling in a compressional setting: The Atlas Mountains of Morocco. Terra Nova, 17, 456–461. https://doi.org/10.1111/j.1365‐3121.2005.00633.x
    [Google Scholar]
  219. Teixell, A., Bertotti, G., de Lamotte, D. F., & Charroud, M. (2009). The geology of vertical movements of the lithosphere: An overview. Tectonophysics, 475, 1–8. https://doi.org/10.1016/j.tecto.2009.08.018
    [Google Scholar]
  220. Tinker, J., de Wit, M., & Brown, R. (2008). Linking source and sink: Evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break‐up, South Africa. Tectonophysics, 455(1–4), 94–103. https://doi.org/10.1016/j.tecto.2007.11.040
    [Google Scholar]
  221. Trappe, J. (1991). Stratigraphy, facies distribution and paleogeography of the marine Paleogene from the Western High Atlas. Morocco: Neues Jahrbuch Für Geologie Und Paläontologie, 180, 279–321.
    [Google Scholar]
  222. van den Bogaard, P. (2013). The origin of the Canary Island Seamount Province ‐ New ages of old seamounts. Scientific Reports, 3(1), 21077. https://doi.org/10.1038/srep02107
    [Google Scholar]
  223. van der Beek, P., Mbede, E., Andriessen, P., & Delvaux, D. (1998). Denudation history of the Malawi and Rukwa Rift flanks (East African Rift System) from apatite fission track thermochronology. Journal of African Earth Sciences, 26, 363–385. https://doi.org/10.1016/S0899‐5362(98)00021‐9
    [Google Scholar]
  224. Verati, C., Rapaille, R., Feraud, G., Marzoli, A., Bertrand, H., & Youbi, N. (2007). 40Ar/39Ar ages and duration of the Central Atlantic Magmatic Province volcanism in Morocco and Portugal and its relation to the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1‐4), 308–325. https://doi.org/10.1016/j.palaeo.2006.06.033
    [Google Scholar]
  225. Vermeesch, P., & Tian, Y. (2014). Thermal history modelling: HeFTy vs. QTQt. Earth Science Reviews, 139, 279–290. https://doi.org/10.1016/j.earscirev.2014.09.010
    [Google Scholar]
  226. Wang, J. (2018). Controls on the organic‐rich mudstones development across the Cenomanian‐Turonian Oceanic Anoxic Event (OAE2) in Moroccan Basins. PhD Thesis, University of Manchester, 248 p.
  227. Wildman, M., Brown, R., Watkins, R., Carter, A., Gleadow, A., & Summerfield, M. (2015). Post break‐up tectonic inversion across the southwestern cape of South Africa: New insights from apatite and zircon fission track thermochronometry. Tectonophysics, 654, 30–55. https://doi.org/10.1016/j.tecto.2015.04.012
    [Google Scholar]
  228. Wildman, M., Webster, D., Brown, R., Chardon, D., Rouby, D., Ye, J., & Dall'Asta, M. (2019). Long‐term evolution of the West African transform margin: estimates of denudation from Benin using apatite thermochronology. Journal of the Geological Society, 176(1), 97–114.
    [Google Scholar]
  229. Wildman, M., Cogné, N., & Beucher, R. (2019). Fission‐Track Thermochronology Applied to the Evolution of Passive Continental Margins. In M.Malusà, & P.Fitzgerald (Eds.), Fission‐Track Thermochronology and its Application to Geology. Springer Textbooks in Earth Sciences, Geography and Environment (pp. 351–371). Springer.
    [Google Scholar]
  230. Wipf, M., Glasmacher, U. A., Stockli, D. F., Emmerich, A., Bechstädt, T., & Baur, H. (2009). Reconstruction of the differentiated long‐term exhumation history of Fuerteventura, Canary Islands, Spain, through fission‐track and (U‐Th–Sm)/He data. International Journal of Earth Sciences, 99, 675–686. https://doi.org/10.1007/s00531‐008‐0415‐z
    [Google Scholar]
  231. Withjack, M. O., & Schlische, R. W. (2005). A Review of Tectonic Events on the Passive Margin of Eastern North America. Bob S. Perkins Research Conference, 25, Houston, p. 203–235.
  232. Wrtiti, M. E., Broutin, J., Freytet, P., Larhrib, M., & Toutin‐Morin, N. (1990). Continental deposits in Permian basins of the Mesetian Morocco, geodynamic history. Journal of African Earth Sciences, 10, 361–368. https://doi.org/10.1016/0899‐5362(90)90067‐O
    [Google Scholar]
  233. Yamato, P., Husson, L., Becker, T. W., & Pedoja, K. (2013). Passive margins getting squeezed in the mantle convection vice. Tectonics, 32, 1559–1570. https://doi.org/10.1002/2013TC003375
    [Google Scholar]
  234. Ye, J. (2016). Evolution topographique, tectonique et sédimentaire syn‐ à post‐rift de la marge transformante ouest africaine. GET Toulouse, PhD Thesis, 273 p.
  235. Ye, J., Chardon, D., Rouby, D., Guillocheau, F., Dall’asta, M., Ferry, J.‐N., & Broucke, O. (2017). Paleogeographic and structural evolution of northwestern Africa and its Atlantic margins since the early Mesozoic. Geosphere, 13, 1254–1284. https://doi.org/10.1130/GES01426.1
    [Google Scholar]
  236. Zarhloule, Y. (2004). Le Gradient Géothermique Profond Du Maroc: Détermination Et Cartographie. Bulletin De L’institut Scientifique De Rabat, 26, 11–25.
    [Google Scholar]
  237. Zeyen, H., Ayarza, P., Fernàndez, M., & Rimi, A. (2005). Lithospheric structure under the western African‐European plate boundary: A transect across the Atlas Mountains and the Gulf of Cadiz. Tectonics, 24, TC2001. https://doi.org/10.1029/2004TC001639
    [Google Scholar]
  238. Zouhri, S., Gingerich, P. D., Elboudali, N., Sebti, S., Noubhani, A., Rahali, M., & Meslouh, S. (2014). New marine mammal faunas (Cetacea and Sirenia) and sea level change in the Samlat Formation, Upper Eocene, near Ad‐Dakhla in southwestern Morocco. Comptes Rendus Palevol, 13(7), 599–610. https://doi.org/10.1016/j.crpv.2014.04.002
    [Google Scholar]
  239. Zouhri, S., Kchikach, A., Saddiqi, O., Haimer El, F. Z., Baidder, L., & Michard, A. (2008). The Cretaceous‐tertiary plateaus. In: Continental Evolution. The Geology of Morocco, Springer, p. 331–333.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12517
Loading
/content/journals/10.1111/bre.12517
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error