1887
Volume 3 Number 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Three end‐member models of half‐graben development (detachment fault, domino‐style, and fault growth) evolve differently through time and produce different basin‐filling patterns. The detachment fault model incorporates a basin‐bounding fault that soles into a subhorizontal detachment fault; the change in the rate of increase in the volume of the basin during uniform fault displacement is zero. Younger strata consistently pinch out against older synrift strata rather than pre‐rift rocks. Both basin‐bounding faults and the intervening fault blocks rotate during extension in the domino fault block model; a consequence of this rotation is that the change in the rate of increase of the volume of the basin is negative during uniform extension. Basin fill commonly forms a fanning wedge during fluvial sedimentation, whereas lacustrine strata tend to pinch out against older synrift strata. In the fault growth models, basins grow both wider and longer through time as the basin‐bounding faults lengthen and displacement accumulates; the change in the rate of increase in basin volume is positive. Fluvial strata progressively onlap pre‐rift rocks of the hanging wall block, whereas lacustrine strata pinch out against older fluvial strata at the centre of the basin but onlap pre‐rift rocks along the lateral edges. These fundamental differences may be useful in discriminating among the three end‐member models. The transition from fluvial to lacustrine deposition and hanging wall onlap relationships observed in numerous continental extensional basins are best explained by the fault growth models.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.1991.tb00123.x
2007-11-06
2024-04-27
Loading full text...

Full text loading...

References

  1. ANDERSON, R. E., ZOBACK, M. L. & THOMPSON, G. A. (1983) Implications of selected subsurface data on the structural form and evolution of some basins in the northern Basin and Range province, Nevada and Utah. Bull. geol. Soc. Am.94, 1055–1072.
    [Google Scholar]
  2. AXEN, G. J. (1988) The geometry of planar domino‐style normal faults above a dipping basal detachment. J. Struct. Geol.10, 405–411.
    [Google Scholar]
  3. BARNETT, J. A. M., MORTIMER, J., RIPPON, J. H., WALSH, J. J. & WATTERSON, J. (1987) Displacement geometry in the volume containing a single normal fault. Bull. Am. Ass. Pet. Geol.71, 925–937.
    [Google Scholar]
  4. BARR, D. (1987) Structural/stratigraphic models for extensional basins of half‐graben type. J. Struct. Geol.9, 491–500.
    [Google Scholar]
  5. CHAPMAN, G. R., LIPPARD, S. J. & MARTYN, J. E. (1978) The stratigraphy and structure of the Kamasia Range, Kenya Rift Valley. J. Geol. Soc. Lord.135, 265–281.
    [Google Scholar]
  6. COWIE, P. A. & SCHOLZ, C. H. (1990) Fault growth and fault termination. EOS, Trans. Am. geophys. Un.71, 631.
    [Google Scholar]
  7. CREWS, S. G. & MCGREW, A. J. (1990) Influence of structural style on rift basin morphology and non‐marine sequence geometry. Geol. Soc. Am. Abstr. with Prog.22(7), A239.
    [Google Scholar]
  8. ELLIOT, D. (1976) The energy balance and deformation mechanism of thrust sheets. Phil. Trans. R. Soc. A283, 289–312.
    [Google Scholar]
  9. EMMONS, W. H. & GARREY, G. H. (1910) General geology. In: Geology and Ore Deposits of the Bullfrog District (Ed. by F. L.Ransome et al. ). Bull. US geol. Surv.407, 19–89.
    [Google Scholar]
  10. FRASER, G. D., WITKIND, I. J. & NELSON, W. H. (1964) A geological interpretation of the epicentral area ‐ the dual‐basin concept. Prof. Pap. US Geol. Surv.435, 99–106.
    [Google Scholar]
  11. GIBBS, A. D. (1983) Balanced cross‐section construction from seismic sections in areas of extensional tectonics. J. Struct. Geol.5, 153–160.
    [Google Scholar]
  12. GIBBS, A. D. (1984) Structural evolution of extensional basin margins. J. Geol. Soc. Lond.141, 609–620.
    [Google Scholar]
  13. GIBSON, J. R., WALSH, J. J. & WATTERSON, J. (1989) Modelling of bed contours and cross‐sections adjacent to planar normal faults. J. Struct. Geol.11, 317–328.
    [Google Scholar]
  14. GROSHONG, R. H., JR. (1989) Half‐graben structures: Balanced models of extensional fault‐bend folds. Bull. geol. Soc. Am.101, 96–105.
    [Google Scholar]
  15. HAMBLIN, W. K. (1965) Origin of ‘reverse drag’ on the downthrown sides of normal faults. Bull. geol. Soc. Am.76, 1145–1164.
    [Google Scholar]
  16. JACKSON, J. A. (1987) Active normal faulting and crustal extension. In: Continental Extensional Tectonics (Ed. by M. P. Coward, J. F. Dewey & P. L. Hancock). Spec. Publ. Geol. Soc. London 28, 3–17.
  17. KUSZNIR, N. J., MARSDEN, G. & EGAN, S. S. (1991) A flexural‐cantilever simple‐shear/pure‐shear model of continental lithosphere extension: Applications to the Jeanne d'Arc basin, Grand Banks and Viking Graben, North Sea. In: The Geometry of Normal Faults (Ed. by A. M. Roberts, G. Yielding & B. Freeman). Spec. Publ. Geol. Soc. London 56, 41–60.
  18. LAMBIASE, J. J. (1991) A model for tectonic control of lacustrine stratigraphic sequences in continental rift basins. In: Lacustrine Exploration: Case Studies and Modern Analogues (Ed. by B. Katz). Mem. Am. Ass. Petrol. Geol. 50, 265–276.
  19. LEEDER, M. R. & GAWTHORPE, R. L. (1987) Sedimentary models for extensional tilt‐block/half‐graben basins. In: Continental Extensional Tectonics (Ed. by M. P. Coward, J. F. Dewey & P. L. Hancock). Spec. Publ. Geol. Soc. London 28, 139–152.
  20. MANDL, G. (1987) Tectonic deformation by rotating parallel faults: the ‘bookshelf mechanism. Tectonophys.141, 277–316.
    [Google Scholar]
  21. MILLER, E. L., GANS, P. B. & GARING, J. (1983) The Snake Range decollement: an exhumed mid‐Tertiary ductile‐brittle transition. Tectonics2, 239–263.
    [Google Scholar]
  22. MORLEY, C K. (1989) Extension, detachments, and sedimentation in continental rifts (with particular reference to East Africa). Tectonics8, 1175–1192.
    [Google Scholar]
  23. MURAOKA, H. & KAMATA, H. (1983) Displacement distribution along minor fault traces. J. Struct. Geol.5, 483–495.
    [Google Scholar]
  24. OLSEN, P. E. (1986) A 40‐million‐year lake record of early Mesozoic climatic forcing. Science234, 842–848.
    [Google Scholar]
  25. OLSEN, P. E. & KENT, D. V. (1990) Continental coring of the Newark rift basin. EOS, Trans. Am. Geophys. Un.71, 385 & 394.
    [Google Scholar]
  26. PROFFETT, J. M., Jr. (1977) Cenozoic geology of the Yerington district, Nevada, and implications for the nature and origin of Basin and Range faulting. Bull. geol. Soc. Am.88, 247–266.
    [Google Scholar]
  27. SCHLISCHE, R. W. (1990b) Anatomy of the Newark extensional basin: Structural geometry and tectonostratigraphic evolution. In: The rifting of a continent: The geology of the Newark basin (Ed. by J. M.Husch , M. J.Hozik & P. E.Olsen ). Geol. Soc. Am. Mem. in Honor of Franklyn B. Van. Houten (in press).
    [Google Scholar]
  28. SCHLISCHE, R. W. (1990b) Aspects of the structural and stratigraphic development of early Mesozoic rift basins of eastern North America. PhD thesis, Columbia University, 579 p.
  29. SCHLISCHE, R. W. & OLSEN, P. E. (1990) Quantitative filling model for continental extensional basins with applications to the early Mesozoic rifts of eastern North America. J. Geol.98, 135–155.
    [Google Scholar]
  30. SCHOLZ, C. H. (1982) Scaling laws for large earthquakes: Consequences for physical models. Bull. seam. Soc. Am.72, 1–14.
    [Google Scholar]
  31. SCLATER, J. G. & CÉLÉRIER, B. (1989) Errors in extension measurements from planar faults observed on Seismic reflection lines. Basin Res.1, 217–221.
    [Google Scholar]
  32. SIBSON, R. H. (1985) A note on fault reactivation. J. Struct. Geol.7, 751–754.
    [Google Scholar]
  33. SMOOT, J. P. (1985) The closed basin hypothesis and the use of working models in facies analysis of the Newark Supergroup. Circ. US Geol. Surv.946, 4–10.
    [Google Scholar]
  34. STEIN, R. S. & BARRIENTOS, S. E. (1985) The 1983 Borah Peak, Idaho, earthquake; Geodetic evidence for deep rupture on a planar fault. U. S. Geol. Surv. Open File Rep.85–290, 459–484.
  35. THOMPSON, G. A. (1960) Problem of late Cenozoic structure of the Basin Ranges. Proc. 21st Int. Geol. Congr., Copenhagen, 18, 62–68.
    [Google Scholar]
  36. UNGER, J. D. (1988) A simple technique for analysis and migration of seismic reflection profiles from the Mesozoic basins of eastern North America. In: Studies of the Early Mesozoic Basins of the Eastern United States (Ed. by A. J.Froclich & G. R.Robinson, Jr. ). Bull. US geol. Surv.1776, 229–235.
    [Google Scholar]
  37. VERRALL., P. (1981) Structural interpretations with applications to North Sea problems. Int. Ass. Petrol. Expl. Course Notes3, London.
    [Google Scholar]
  38. WALSH, J. J. & WATTERSON, J. (1987) Distribution of cumulative displacement and of seismic slip on a single normal fault surface. J. Struct. Geol.9, 1039–1046.
    [Google Scholar]
  39. WALSH, J. J. & WATTERSON, J. (1988) Analysis of the relationship between displacements and dimensions of faults. J. Struct. Geol.10, 239–247.
    [Google Scholar]
  40. WALSH, J. J. & WATTERSON, J. (1989) Displacement gradients on fault surfaces. J. Struct. Geol.11, 307–316.
    [Google Scholar]
  41. WALSH, J. J. & WATTERSON, J. (1991) Geometric and kinematic coherence and scale effects in normal fault systems. In: The Geometry of Normal Faults (Ed. by A. M. Roberts, G. Yielding & B. Freeman). Spec. Publ. Geol. Soc. London 56, 193–203.
  42. WATTERSON, J. (1986) Fault dimensions, displacements and growth. Pure Appl. Geophys.124, 365–373.
    [Google Scholar]
  43. WERNICICE, B. P. & AXEN, G. J. (1988) On the role of isostasy in the evolution of normal fault systems. Geology16, 848–851.
    [Google Scholar]
  44. WERNICKE, B. & BURCHFIEL, B. C. (1982) Modes of extensional tectonics. J. Struct. Geol.4, 105–115.
    [Google Scholar]
  45. WHITE, N. J., JACKSON, J. A. & MCKENZIE, D. P. (1986) The relationship between the geometry of normal faults and that of the sedimentary layers in their hanging walls. J. Struct. Geol.8, 897–909.
    [Google Scholar]
  46. WILLIAMS, G. & VANN, I. (1987) The geometry of listric normal faults and deformation in their hanging walls. J. Struct. Geol.9, 789–795.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.1991.tb00123.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error