1887
Volume 6, Issue 2‐3
  • E-ISSN: 1365-2117

Abstract

Abstract

The history of the African continent since the beginning of fragmentation of Pangaea is one of widespread rifting in the Late Jurassic to Early Cretaceous, extensive inundation under elevated Cretaceous sea‐levels, widespread epeirogenic uplift beginning in the Early Tertiary and off‐rift domal uplift associated with alkaline igneous activity in the Tertiary and especially in the Neogene. The cratonic basins have developed against this post break‐up background,

The cratonic basins of Africa are located between a relatively dense array of highspots and hotspots. Although there is a clear underlying structural fabric in the form of the Central African and West African rift systems, the present location of these basins cannot always be unequivocally linked to the presence of underlying rifts. The Congo Basin stands out as overlying a rigid rather than stretched lithosphere, and no reasonable density contrasts in the crust can explain the isostatic anomalies over the basin. Either there is a cold, dense region situated at depths typical of the upper mantle beneath the basin, or a downward‐acting dynamic force on the base of the lithosphere is necessary to explain the gravity field. Together, this points to the likelihood of a convective downwelling beneath the African plate under the Congo region.

The African cold‐spot model may be applicable to the Early Palaeozoic cratonic basins of North America. Their location and timing of development with respect to the adjacent plate margin, size and shape may be analogous to the African examples.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.1994.tb00078.x
2007-11-06
2024-04-27
Loading full text...

Full text loading...

References

  1. Ahern, J. L. & Dikeou, P. J. (1989) Evolution of the lithosphere beneath the Michigan Basin. Earth planer. Sci. Lert., 95, 73–84.
    [Google Scholar]
  2. Airy, G. B. (1855). On the computation of the effect of the attraction of the mountain‐masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Phil. Trans. R. Soc. London, 145, 101–104.
    [Google Scholar]
  3. Avbovbo, A. A., Ayooia, E. D. & Osahon, G. A. (1986). Depositional style and structural styles in the Chad Basin of northeast Nigeria. Bull. Am. Ass. petrol. Geol., 70, 1787–1798.
    [Google Scholar]
  4. Bailey, D. K. (1992). Episodic alkaline magmatic activity in Africa. In: Magmaism and the Causes Continental Break‐Up . (Ed. by B. C.Storey , T.Alabaster & R. J.Pankhurst), Geological Society of London Special Publication68, 91–99.
    [Google Scholar]
  5. Baker, B. H., Mohr, P. A. & Williams, L. A. J. (1972). The Geology of the Eastern Rift System of Africa. Spec. Publ. Geological Society of America136.
    [Google Scholar]
  6. Bands, R. J., Parker, R. L. & Huestis, S. P. (1977) Isostatic compensation on a continental scale: local versus regional mechanisms. Geophys. J. Royal astron. Soc., 51, 431–452.
    [Google Scholar]
  7. Barrell., J. (1914) Thc strength of the Earth's crust VIII. Physical conditions controlling thc nature of the lithospherc and asthenosphere. J. Geol., 22, 425–443.
    [Google Scholar]
  8. Barton, P. J. & Wood, R. J. (1984). Tectonic evolution of the North Sea Basin: crustal stretching and subsidence. Earth planet. Sci. Lett., 49, 987–1022.
    [Google Scholar]
  9. Bechtel., T. D. (1990) Mechanisms of isostatic compensation in East Africa and North America . PhD thesis, Brown University, Chicago .
  10. Bechtel, T. D., Forsyth, D. W., Sharpton, V. I., & Grieve, R. A. F. (1990) Variations in the effective elastic thickness of the North American lithosphere. Nature, 343, 636–638.
    [Google Scholar]
  11. Bechtel, T.D., Forsyth, D. W. & Swain., C. J. (1987). Mechanisms of isostatic cornpensation in the vicinity of the East African Rift, Kenya. Geophys. J. Royal astron. Soc., 90, 445–465.
    [Google Scholar]
  12. Binks, R. M. & Fajrhead, J. D. (1992) A plate tectonic setting for Mesozoic rifts of West and Ceniral Africa. Tectonophysics, 213, 141–151.
    [Google Scholar]
  13. Bond, G. C. (1978a) Evidence for late Tertiary uplift of Africa relative to North America, South America, Australia and Europe. J. Geol., 86, 47–65.
    [Google Scholar]
  14. Bond, G. C. (1978b) Speculations on real sea‐level changes and vertical motions of continents at selected times in the Cretaceous and Terti Periods. Geology, 6, 247–250.
    [Google Scholar]
  15. Bond, G. C. (1979) Evidence for some uplifts of large magnitude in continental platforms. Tectonophysics, 61, 285–305.
    [Google Scholar]
  16. Bond, G. C., Nickeson, P. A. & Kominz, M. (1984) Break‐up of a super‐continent between 625 Ma and 555 Ma: new evidence and implications for continental histories. Earth planet. Sci. Lett., 70, 325–345.
    [Google Scholar]
  17. Bow, M. H. P. (1993) Modelling the plate‐driving mechanism. J. geol. Soc., 150, 941–951.
    [Google Scholar]
  18. Bowie, W. (1927) Isostasy. E. P. Dutton and Co., New York. Bowin, C. (1991) The Earth's gravity field and plate tectonics. Tectonophysics, 187, 68–89.
    [Google Scholar]
  19. Briden, J. C. & Gass, I. G. (1974) Plate movement and continental magmatism. Nature, 248, 650–653.
    [Google Scholar]
  20. Burke, K. C. (1976) The Chad Basin: an active intra‐continental basin. Tectonophysics, 36, 197–206.
    [Google Scholar]
  21. Burke, K. C. & Dewey, J. F. (1973) Plume‐generated triple junctions: key indicators in applying plate tectonics to old rocks. J. Geol., 81, 406–433.
    [Google Scholar]
  22. Burke, K. C. & Whiteman, A. (1973) Uplift, rifting and the breakup of Africa. In: Implications of Continental Drifi to the Earth Sciences (Ed. by D.Tarling & S. K.Runcorn ), pp. 735–755. Academic Press, London .
    [Google Scholar]
  23. Burke, K. C. & Wilson, J. T. (1976) Hotspots on the Earth's surface. Sci. Am., 235, 46–57.
    [Google Scholar]
  24. Cahen, L. (1954) Géologie du Congo Belge. Vaillant‐Carmanne, Liège.
    [Google Scholar]
  25. Cahen, L., Snelling, N. J., Delhal, J. & Vail, J. R. (1984) The Geochronology and Evolution of Afica. Oxford University Press, Oxford .
    [Google Scholar]
  26. Chase, C. G. (1979) Subduction, the geoid and lower mantle convection. Nature, 282, 464–468.
    [Google Scholar]
  27. Cloetingh, S. (1988) Intraplate stresses: a new element in basin analysis. In: New Perspertiucs in Basin Analysis (Ed. by K. L.Kleinspehn & C.Paola ), pp. 205–230. Springer‐Verlag, New York .
    [Google Scholar]
  28. Cox, K. G. (1989) The role of mantle plumes in the development of continental drainage patterns. Nature, 342, 873–877.
    [Google Scholar]
  29. Cratchley, C. R., Louis, P. & Ajakaiye, D. E. (1984) Geophysical and geological evidence for the Bcnue‐Chad Basin Cretaceous rift valley system and its tectonic implications. J. African Earth Sci.2, 141–150.
    [Google Scholar]
  30. Crough, S. T. & Jurdy, D. M. (1980) Subducted lithosphere, hotspots and the geoid. Earth planet. Sci. Lett., 48, 15–22.
    [Google Scholar]
  31. Daly, M. C., Lawrence, S. R., Diemu‐tshiband, K. & Matouana, B. (1992) Tectonic evolution of the Cuvette Centrale, Zaire. J. geol. Soc. London, 149, 539–546.
    [Google Scholar]
  32. Daly, M. C., Lawrence., S. R., Kimuna, D. & Binga, M. (1991) Late Palaeozoic deformation in central Africa: a result of a distant collisionNature, 350, 605.
    [Google Scholar]
  33. Davies, G. F. (1988). Ocean bathymetry and mantle convection, 1, Large‐scale flow and hotspots. J. geophys. Res., 93, 10467–10480.
    [Google Scholar]
  34. Derito, K. F., Cozzareli, F. A. & Hodges, D. S. (1983) Mechanisms of subsidence in ancient cratonic rift basins. Tectonophysics, 94, 141–168.
    [Google Scholar]
  35. Dziewonski, A. M. (1984) Mapping the lower mantle: determination of lateral hetreogeneity in P velocity up to degree and order 6. J. geophys. Res., 89, 5929–5952.
    [Google Scholar]
  36. Ebinger, C. J., Bechtel., T. D., Forsyth, D. W. & Rowin, C. O. (1989) Effective elastic plate thickness beneath the East African and Afar Plateaus and dynamic compensation of the uplifts. J. geophys. Res., 94, 2883–2901.
    [Google Scholar]
  37. Ebinger, C. J., Karner, G. D. & Weissel., J. K. (1991) Mechanical strength of extended continental lithosphere: constraints from the western rift system, Africa. Tectonics, 10, 1239–1256.
    [Google Scholar]
  38. Fairhead, J. D. (1985) Geophysical controls on the sedimentation within African rift basins. In: Sedimentation in the African Rifts (Ed. by L. E.Frostick et al.), Geological Society Special Publication, 25, 19–27.
    [Google Scholar]
  39. Fairhead, J. D. & Binks, R. M. (1991) Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system. Tectonophysics, 187, 191–203.
    [Google Scholar]
  40. Fairhead, J. D. & Girdler, K. W. (1971). The seismicity of Africa. Geophys. J. Royal astron. Soc., 24, 271–301.
    [Google Scholar]
  41. Fairhead, J. D. & Green, C. M. (1989) Controls on rifting in Africa and the regional tectonic model for the Nigeria and East Niger rift basins. J. African Earth Sci., 8, 231–249.
    [Google Scholar]
  42. Faijrhead, J. D. & Reeves, C. V. (1977) Teleseismic delay times, Bouguer anomalies and the inferred thickness of the African plate. Earth planet. Sci. Lett., 36, 63–76.
    [Google Scholar]
  43. Forney, G. G. (1975) Permo‐Triassic sea‐level change. J. Geol., 83, 773–779.
    [Google Scholar]
  44. Forsyth, D. W. (1985) Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res., 90, 38–47.
    [Google Scholar]
  45. Fowler, C. M. R. & Nosbet, E. G. (1985) The subsidence of the Williston Basin. Can. J. Earth Sci., 22, 408–415.
    [Google Scholar]
  46. Franks, S. & Nairn, A. E. M. (1973) The equatorial marginal basins of west Africa. In: The Ocean Basins and Margins, Vol. 1. The South Atlantic (Ed. by A. E. M.Nairn & F. G.Stehli ), pp. 301–350. Plenum Press, New York .
    [Google Scholar]
  47. Genik, G. J. (1992). Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (C.A.R.). Tectonophysics, 213, 141–151.
    [Google Scholar]
  48. Gilchrist, A. R. & Summerfield, M. A. (1990) Differential denudation and flexural isostasy in the formation of rifted margin uplifts. Nature, 346, 739–742.
    [Google Scholar]
  49. Guiraud, R., Binks, R. M., Fairhead, J. D. & Wilaon, M. (1992). Chronology and geodynamic setting of Cretaceous‐Cenozoic rifting in West and Central Africa. Tectonophysics., 213, 227–234.
    [Google Scholar]
  50. Guiraud, R. & Maurin, J. C. (1992) Early Cretaceous rifts of western and central Africa: an overview. Tectonophysics, 213, 153–168.
    [Google Scholar]
  51. Hadiouche, O. & Jobert, N. (1988). Geographical distribution of surface‐wave velocities and 3‐D upper‐mantle structure in Africa. Geophys. J. Int., 95, 87–109.
    [Google Scholar]
  52. Hager, B. H. (1983) Global isostatic geoid anonialies for plate and boundary layer models of the lithosphere. Earth planet. Sci. Lett., 63, 97–109.
    [Google Scholar]
  53. Hager, B. H. (1984) Subducted slabs and the geoid: constraints on mantle rheology and flow. J. geophys. Res., 89, 6003–6015.
    [Google Scholar]
  54. Hamdani, Y., Mareschal., J.‐C. & Arkani‐Hamed, J. (1991) Phase changes and thermal subsidence in intracon‐tinental sedimentary basins. Geophys. J. Int., 106, 657–665.
    [Google Scholar]
  55. Han‐ShouLui. (1979) Mantle convection and subcrustal stresses under Australia. Modern Geol., 7, 29–36.
    [Google Scholar]
  56. Hartley, R. W. (1994) Isostasy of Afica: implications for the thermomechanical behaviour of the continental lithosphere . PhD thesis, Oxford University, Department of Earth Sciences.
  57. Hartley, R. W. & Watis, A. B. (1994) Isostasy of Africa and the evolution of the flexural rigidity of continental lithosphere. Earth planet. Sci. Lett., in press.
  58. Haxby, W. F., Tircptte, D. L. & Bord, J. M. (1976) Thermal and mechanical evolution of the Michigan Basin. Tectonophysics. 36, 55–75.
    [Google Scholar]
  59. Howell, P.D.&Van der Pluijm, B. A. (1990) Early history of the Michigan Basin: subsidence and Appalachian tectonics. Geology, 18, 1195–1198.
    [Google Scholar]
  60. Hsu, K. J. (1965) Isostasy, crustal thinning, mantle changes, and thc disappearance of ancient land masses. Am. J. Sci., 263, 97–109.
    [Google Scholar]
  61. Joullile, C. (1989) Caractérisation du compretment mécanique de la lithosphére continentale àpartir de données gravimétriques; implications géodynamiques pour la chaine pan‐africane du Sahara Central de I' Afrique (Air). PhD thesis, Université de Paris Sud, Orsay .
  62. Jurdy, D. M. & Stefanick, M. (1983) Flow models for back‐arc spreading. Tectonophysics, 99, 191–206.
    [Google Scholar]
  63. Karner, G. D. & Watts, A. B. (1983) Gravity anomalies and flexure of the lithosphere at mountain ranges. J. geophys. Res., 88, 10449–10477.
    [Google Scholar]
  64. Karner, G. D. (1986) Effects of lithospheric in‐plane stress on sedimentary basin stratigraphy. Teftonil-s, 5, 573–588.
    [Google Scholar]
  65. King, L. C. (1962) Morphoogy of the Earth. Hafncr, New York .
    [Google Scholar]
  66. Klein, G.DeV. (1991) Origin and evolution of North American cratonic basins. South Afr J. Geol., 94, 3–18.
    [Google Scholar]
  67. Klein, G.DeV. & Hsui, A. T. (1983) Structure and evolution of the intracratonic basins of central Australia. Geophys. J. Royal astron Soc., 74, 843–886.
    [Google Scholar]
  68. Klein, G.DeV. & Hsui, A. T. (1987) Origins of intracratonic basins. Geology, 17, 1094–1098.
    [Google Scholar]
  69. Kolata, D. R. & Nelson, W. J. (1991) Basin‐forming mechanisms of thc Illinois Basin. In: Cratonic Basins. (Ed. by M. W.Leighton , D. K.Kolata, D. F.Oltz & J. J.Eidel), Mem. Am. Ass. petrol. Geol., 51, 287–292.
    [Google Scholar]
  70. Lambeck, K. (1983) The role of compressive forces in intracratonic basin formation and mid‐plate orogenies. Geophys Res. Lett., 10, 845–848.
    [Google Scholar]
  71. Leighton, M. W. & Kolata, D. R. (1990) Selectcd interior basins and their place in thc scheme of global tectonics: a synthesis. In: Cratonic Basins. (Ed. by M. W.Leighton , D. R., Kolata, D. F.Oltz & J. J.Eidel), Mem. Am. Ass. petrol. Geol., 51, 729–797.
    [Google Scholar]
  72. Lesquer, A., Bourmatte, A. & Dautria, J. M. (1988) Deep structure of the Hoggar domal uplift (cenatral Sahara, south Algeria) from gravity, thermal and petrological data. Tectonophysics. 152, 71–87.
    [Google Scholar]
  73. Lindsay, J. F. & Korsch, R. J. (1989) Interplay of tectonics and sea‐level changes in basin evolution: an example from the intracratonic Amadeus Basin, central Ausiralia. Basin Res., 2, 3–25.
    [Google Scholar]
  74. McGinis, L.D., Helgold, C. P., Ervin, C. P. & Heidi, M. (1976) The Gravity Field and ectonics of Illinois. Tech. rept. 494. Illinois Sate Geological Survey Circular.
    [Google Scholar]
  75. McKenzie, D. P. (1978) Some remarks on the development of sedimentary basins. Earth planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  76. McKknzie, D. P. & Bowin, C. O. (1976) The relationship between gravity and bathymetry in the Atlantic Ocean. J. geophys. Res., 81, 1903–1915.
    [Google Scholar]
  77. Mercario, A., Malinverno, A. & Haxby, W.F. (1992) On the robustness of elastic thickncss cstimates using coherence methodology. EOS Trans. AGU, 73, 551 (abstract).
    [Google Scholar]
  78. Middleton, M. F. (1980) A model of intracratonic basin formation entailing deep crustal metamorphism. Geophys. J. Royal astron. Soc., 62, 1–14.
    [Google Scholar]
  79. Middleton, M. F. (1989). A model for the formation of intracratonic sag basins. Geophy. J. Inter., 99, 665–676.
    [Google Scholar]
  80. Morgna, W. J. (1983) Hotspot tracks and the arly rifting of the Atlantic. Tectonophysics, 94, 123–139.
    [Google Scholar]
  81. Neves, De. Brrro, B. B., Fuck, R. A., Cordani, U. G. & Thomaz, A. (1984) Influence of bascnient structures on the evolution of the major sedimentary basins of Brazil: a case of tectonic hcritage. J. Geodyn., 1, 495–510.
    [Google Scholar]
  82. Nunn, J. A. & Sleep, N. H. (1984) Thermal contraction of the lithosphere and flexure of intracontinental basins: A three dimensional study of the Michigan Basin. Geophys. J. Royal astron. Soc., 76, 587–635.
    [Google Scholar]
  83. O'connell, R. J. & Wasserburg, G. J. (1972) Dynamics of submergence and uplift of a sedimentary basin underlain by a phase changc boundary. Rev. Geophys., 10, 355–368.
    [Google Scholar]
  84. Parsons, B., & McKenzie, D. P. (1978) Mantle convection and the thermal structure of the plates. J. Geoiphys. Res., 83, 4485–4496.
    [Google Scholar]
  85. Pavoni, N. (1992) Rifting of Africa and pattern of mantle convection beneath the African Plate. Tectonophysics, 215, 35–53.
    [Google Scholar]
  86. Petters, S. W. (1981) Stratigraphy of Chad and Iullmedden basins (West Africa). Eclag. geol. Helv. 74, 139–159.
    [Google Scholar]
  87. Pichon, X.Le, Francheteau, J., & Bonnin, J. (1973) Plate Tectonics. Developments in Geodynamics, Vol. 6.Elsevier,é New York .
    [Google Scholar]
  88. Poudjom Djomani, Y. H., Diament, M. & Albouy, Y. (1992) Mechanical behaviour of the lithosphere beneath the Adamawa Uplift (Cameroon, West Africa) based on gravity data. J. African Earth Sci. 15, 81–90.
    [Google Scholar]
  89. Pratt, J. H. (1855) On the attraction of the Himalaya Mountains, and of the elevated regions beyond them upon a plumb‐line in India. Phil. Trans. R. Soc. London, 145, 53–101.
    [Google Scholar]
  90. Quinlan, G. M. (1987) Models of subsidencc mechanisms in intracratoinc basins and their applicability to North American examples. In: Sedimentary Basins and Busin Forming Mechanisms (Ed. by C.Beaumont & A. J.I'ankard), Can. Sol-. Petrol. Geol. Mem., 12, 463–481.
    [Google Scholar]
  91. Rabinowttz, P. D. & Labrecque, J. (1979) The Mesozoic South Atlantic and the evolution of its continental margins. J. geophys. Res., 84, 5973–6002.
    [Google Scholar]
  92. Richards, M. A., Hager, B. H. & Sleep, N. H. (1988) Dynamically‐supported geoid highs over hotspots: observation and theory. J. geaphys. Res., 93, 7690–7708.
    [Google Scholar]
  93. Richter, F. M. & Parsons, B. (1975) On the interaction of two scales of convection in the mantle. J. geophys. Res., 80, 2529–2541.
    [Google Scholar]
  94. Ruppel, C., Kogan, M. G. & McNutt., M. K. (1993) Implications of new gravity data for Baikal rift zone structure. Geophys. Res. Lett., 20, 1635–1638.
    [Google Scholar]
  95. Saiiagian, D. (1980) Sublithospheric upwelling distribution. Nature, 287, 217–218.
    [Google Scholar]
  96. Sahagian, D. (1993) Structural evolution of African basins: Stratigraphic synthesis. Basin Res., 5, 41–54.
    [Google Scholar]
  97. Scotese, C. R., Gahagan, L. M. & Larson, R. I., (1988) Plate tectonic reconstructions of Crctaceous and Cenozoic ocean basins. Tectonophysics, 155, 27–48.
    [Google Scholar]
  98. Shudofsky, G. N. (1985) Snuck mechanisms and focal depths of East African earthquakes using Rayleigh‐wave inversion and body‐wave modelling. Geophys. J. Royal astron. Soc., 83, 563–614.
    [Google Scholar]
  99. Sleep, N. H. (1971) Thermal effects of the formation of Atlantic continental margins by continental break‐up. Geophys. J. Rayal astron. Soc., 24, 325–350.
    [Google Scholar]
  100. Sleep, N.H., Nunn, J.A. & Chev, L. (1980) Platform basins. Ann. Rev. Earth planet. Sci., 8, 17–34.
    [Google Scholar]
  101. Sleep, N. H. & Snell, N. S. (1976) Thermal contraction and flexure of Mid‐continent and Atlantic marginal basins. Geophys. J. Royal astron. Soc., 45, 125–154.
    [Google Scholar]
  102. Thiessen, R., Burke, K. & Kidd, W. S. F. (1979) African hotspots and their relation to the underlying mantle. Geology, 7, 263–266.
    [Google Scholar]
  103. Treworgy, J. D., Sargent, M. L. & Kolata, D. R. (1989) Tectonic subsidence history of the Illinois Basin. Bull. Am. Ass. petrol. Geol., 73, 1040–1041.
    [Google Scholar]
  104. Watts, A. B. (1978) An analysis of isostasy in the World's oceans. 1. Hawaiian—Emperor Seamount Chain. J. geophys. Res., 83, 5989–6004.
    [Google Scholar]
  105. Watts, A. R. (1988) Gravity anomalies, crustal structure and flexure of the lithosphere at the Baltimore Canyon Trough. Earth planet. Sci. Lett., 89, 221–238.
    [Google Scholar]
  106. Watts, A. B. & Cochran, J. R. (1974) Gravity anomalies and flexure of the lithosphere along the Hawaiian‐Emperor Seamount Chain. Geophys. J. Royal astron. Soc., 38, 119–141.
    [Google Scholar]
  107. Watts, A. B., Karner, G. D. & Steckler, M. S. (1982) Lithospheric flexure and the evolution of sedimentary basins. In: The Evolution of Sedimentary Basins (Ed. by P.Kent , M. H. P.Bott , D. P.McKenzie & C. A.Williams ), Transactions of the Rojd Society, London , 305A, 249–281.
    [Google Scholar]
  108. Weissei., J. K. & Kakner, CI. D. (1990) Flexural uplift of rift flanks due to mechanical unbending of the lithosphere during extension. J. geophys. Res., 94, 13919–13950.
    [Google Scholar]
  109. Wilson, M. & Guiraud, R. (1992) Magmatism and rifting in Western and Central Africa, from Late Jurassic to Recent times. Tectonophysics, 213, 141–151.
    [Google Scholar]
  110. Wright, J. B., Hastings, D. A., Jones, W. B. & WilliamsH. R. (1985) Geology and Mineral Resources of West Africa. George Allen & Unwin, London .
    [Google Scholar]
  111. Ziegler, P. A. (1992) Plate tectonics, plate‐moving mechanisms and rifting. Tectonophysics, 215, 9–34.
    [Google Scholar]
  112. Zuber, M. T., Bechtel, T. D. & Forsyth, D. W. (1989) Effective elastic thickness of the lithosphere and mechanisms of isostatic compensation in Australia. J. geophys. Res., 94, 13919–13930.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.1994.tb00078.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error