1887
Volume 20, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The Ayabacas Formation of southern Peru is an impressive unit formed by the giant submarine collapse of the mid‐Cretaceous carbonate platform of the western Peru back‐arc basin (WPBAB), near the Turonian–Coniacian transition (∼90–89 Ma). It extends along the southwestern edge of the Cordillera Oriental and throughout the Altiplano and Cordillera Occidental over >80 000 km2 in map view, and represents a volume of displaced sediments of >10 000 km3. The collapse occurred down the basin slope, i.e. toward the SW. Six zones are characterised on the basis of deformational facies, and a seventh corresponds to the northeastern ‘stable’ area (Zone 0). Zones 1–3 display increasing fragmentation from NE to SW, and are composed of limestone rafts and sheets embedded in a matrix of mainly red, partly calcareous and locally sandy, mudstones to siltstones. In contrast, in Zones 4 and 5 the unit consists only of displaced and stacked limestone masses forming a ‘sedimentary thrust and fold system’, with sizes increasing to the southwest. In Zone 6, the upper part of the limestone succession consists of rafts and sheets stacked over the regularly bedded lower part. The triggering of this extremely large mass wasting clearly ensued from slope creation, oversteepening and seismicity produced by extensional tectonic activity, as demonstrated by the observation of synsedimentary normal faults and related thickness variations. Other factors, such as pore pressure increases or lithification contrasts probably facilitated sliding. The key role of tectonics is strengthened by the specific relationships between the basin and collapse histories and two major fault systems that cross the study area. The Ayabacas collapse occurred at a turning point in the Central Andean evolution. Before the event, the back‐arc basin had been essentially marine and deepened to the west, with little volcanic activity taking place at the arc. After the event, the back‐arc was occupied by continental to near‐continental environments, and was bounded to the southwest by a massive volcanic arc shedding debris and tuffs into the basin.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00358.x
2008-05-14
2024-04-27
Loading full text...

Full text loading...

References

  1. Atherton, M.P. (1990) The coastal batholith of Peru: the product of rapid recycling of “new” crust formed within rifted continental margin. Geol. J., 25, 337–349.
    [Google Scholar]
  2. Atherton, M.P. & Webb, S. (1989) Volcanic facies, structure, and geochemistry of the marginal basin rocks of central Peru. J. South Am. Earth Sci., 2, 241–261.
    [Google Scholar]
  3. Atherton, M.P. & Aguirre, L. (1992) Thermal and geotectonic setting of Cretaceous volcanic rocks near Ica, Peru, in relation to Andean crustal thinning. J. South Am. Earth Sci., 5, 47–69.
    [Google Scholar]
  4. Audebaud, E. (1967) Etude géologique de la région de Sicuani et Ocongate (Cordillère Orientale du Sud Péruvien). Thèse de 3ème cycle, Université de Grenoble, 60 p.
  5. Audebaud, E. (1970) Premières observations sur la tectonique tangentielle polyphasée des terrains secondaires de la Cordillère Orientale du Sud‐Est péruvien. C. R. Acad. Sci., Sér. D, 270, 3190–3193.
    [Google Scholar]
  6. Audebaud, E. (1971a) Mise au point sur la stratigraphie et la tectonique des calcaires Cénomaniens du Sud‐Est péruvien (formation Ayavacas). C. R. Acad. Sci., Sér. D, 272, 1059–1062.
    [Google Scholar]
  7. Audebaud, E. (1971b) Photogéologie de reconnaissance et difficultés d'interprétation dans une zone à structure complexe (Cordillère Orientale du Sud du Pérou : hameau Hanchipacha, nord de Sicuani). Photo‐interprétation, 5, fascicule 3, Technip, Paris, 15–21.
  8. Audebaud, E., Capdevila, R., Dalmayrac, B., Debelmas, J., Laubacher, G., Lefevre, C., Marocco, R., Martinez, C., Mattauer, M., Megard, F., Paredes, J. & Tomasi, P. (1973) Les traits géologiques essentiels des Andes Centrales (Pérou‐Bolivie). Rev. Géograph. Phys. Géol. Dynam., 15, 73–114.
    [Google Scholar]
  9. Audebaud, E. & Debelmas, J. (1971) Tectonique polyphasée et morphotectonique des terrains Crétacés dans la Cordillère Orientale du Sud péruvien. Etude d'une structure caractéristique. Cahiers ORSTOM, Sér. Géol., 3, 59–66.
    [Google Scholar]
  10. Audebaud, E. & Laubacher, G. (1969) Présence du Tertiaire plissé (groupe Puno) dans la Cordillère Orientale du sud du Pérou. C. R. Acad. Sci., Sér. D, 269, 2301–2304.
    [Google Scholar]
  11. Bathurst, R.G.C. (1971) Carbonate sediments and their diagenesis. Developments in Sedimentology, 12. Elsevier, Amsterdam, 620 p.
    [Google Scholar]
  12. Benavides‐Cáceres, V. (1962) Estratigrafía pre‐Terciaria de la región de Arequipa. Bol. Soc. Geol. Perú, 38, 5–45.
    [Google Scholar]
  13. Bond, R.M.G. & McClay, K.R. (1995) Inversion of a Lower Cretaceous extensional basin, south central Pyrenees, Spain. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan ), Spec. Pfubl. Geol. Soc. London , 88, 415–431.
    [Google Scholar]
  14. Brun, J.‐P. & Fort, X. (2004) Compressional salt tectonics (Angolan margin). Tectonophysics, 382, 129–150.
    [Google Scholar]
  15. Bryant, W.R., Deflacke, A.P. & Trabant, P.K. (1974) Consolidation of marine clays and carbonates. In: Deep Sea Sediments; Physical and Mechanical Properties; Determination of Mechanical Properties in Marine Sediments (Marine Science, 2, 209–244. Plenum, New York.
    [Google Scholar]
  16. Cabrera La Rosa, A. & Petersen, G. (1936) Reconocimiento geológico de los Yacimientos Petrolíferos del Departamento de Puno. Bol. Cuerpo Ingenieros de Minas del Perú, 115, 100 p.
    [Google Scholar]
  17. Callot, P., Sempere, T., Odonne, F. & Robert, E. (2007) The Mid‐Cretaceous carbonate platform of southern Peru collapsed at the Turonian‐Coniacian transition. 4th European Meeting on the Palaeontology and Stratigraphy of Latin America (EMPSLA). Cuadernos del Museo Geominero, Instituto Geológico y Minero de España, Madrid, 8, 75–80.
  18. Canals, M., Lastras, G., Urgeles, R., Casamor, J.L., Mienert, J., Cattaneo, A., De Batist, M., Haflidason, H., Imbo, Y., Laberg, J.S., Locat, J., Long, D., Longva, O., Masson, D.G., Sultan, N., Trincardi, F. & Bryn, P. (2004) Slope failure dynamics and impacts from seafloor and shallow sub‐seafloor geophysical data: case studies from the COSTA project. Mar. Geol., 213, 9–72.
    [Google Scholar]
  19. Carlier, G., Lorand, J.P., Liégeois, J.P., Fornari, M., Soler, P., Carlotto, V. & Cárdenas, J. (2005) Potassic‐ultrapotassic mafic rocks delineate two lithospheric mantle blocks beneath the southern Peruvian Altiplano. Geology, 33, 601–604.
    [Google Scholar]
  20. Carlotto, V. (2002) Evolution andine et raccourcissement au niveau de Cusco (13–16°S) Pérou. Thèse de Doctorat Université Joseph Fourier, Grenoble. Géologie Alpine, Mémoire Hors Série, 39, 203 p.
  21. Carlotto, V., Gil, W., Cárdenas, J. & Chávez, R. (1996) Geología de los cuadrángulos de Urubamba y Calca hojas 27‐r y 27‐s. Boletín INGEMMET, 65, serie A, Carta Geológica Nacional, 245 p.
  22. Carlotto, V., Jaillard, E. & Mascle, G. (1992) Relación entre sedimentación, paleogeografía y tectónica en la región de Cusco (Sur del Perú) entre el Jurásico Superior‐Paleoceno. Bol. Soc. Geol. Perú, 83, 1–20.
    [Google Scholar]
  23. Chanove, G., Mattauer, M. & Mégard, F. (1969) Précisions sur la tectonique tangentielle des terrains secondaires du massif de Pirin (Nord‐Ouest du lac Titicaca, Pérou). C. R. Acad. Sci., Sér. D, 268, 1698–1701.
    [Google Scholar]
  24. Collot, J., Lewis, K., Lamarche, G. & Lallemand, S. (2001) The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand: result of oblique seamount subduction. J. Geophys. Res. (B9), 106, 19271–19298.
    [Google Scholar]
  25. Cosgrove, J.W. (1995) The expression of hydraulic fracturing in rocks and sediments. In: Fractography: Fracture Topography as a Tool in Fracture Mechanics and Stress Analysis (Ed. by M.S.Ameen ), Spec. Publ. Geol. Soc. London , 92, 187–196.
    [Google Scholar]
  26. Cruz, M. (2002) Estratigrafía y evolución tectono‐sedimentaria de los depósitos sin‐orogénicos del cuadrángulo de Huambo: Las formaciones Ashua y Huanca, departamento de Arequipa. Tesis de la Universidad Nacional San Agustín de Arequipa, 127 p.
  27. De Jong, K.A. (1974) Melange (Olistostrome) near Lago Titicaca, Peru. AAPG Bull., 58, 729–741.
    [Google Scholar]
  28. Demercian, S., Szatmari, P. & Cobbold, P.R. (1993) Style and pattern of salt diapirs due to thin‐skinned gravitational gliding, Campos and Santos basins, offshore Brazil. Tectonophysics, 228, 393–433.
    [Google Scholar]
  29. Ellison, R.A., Klinck, B.A. & Hawkins, M.P. (1989) Deformation events in Andean orogenic cycle in the Altiplano and Western Cordillera, southern Peru. J. South Am Earth Sci., 2, 263–276.
    [Google Scholar]
  30. Floquet, M. & Hennuy, J. (2003) Evolutionary gravity flow deposits in the Middle Turonian – Early Coniacian southern Provence Basin (SE France): origins and depositional processes. In: Submarine Mass Movements and their Consequences (Ed. by J.Locat & J.Mienert ), pp. 417–424. Kluwer Academic Publishers, Dordrecht (the Netherlands).
    [Google Scholar]
  31. Frey‐Martínez, J., Cartwright, J. & Hall, B. (2005) 3D seismic interpretation of slump complexes: examples from the continental margin of Israel. Basin Res., 17, 83–108.
    [Google Scholar]
  32. Frey‐Martínez, J., Cartwright, J. & James, D. (2006) Frontally confined versus frontally emergent submarine landslides: a 3D seismic characterisation. Mar. Petrol. Geol., 23, 585–604.
    [Google Scholar]
  33. Gee, M.J.R., Masson, D.G, Watts, A.B. & Allen, P.A. (1999) The Saharan debris flow: an insight into the mechanics of long runout submarine debris flows. Sedimentology, 46, 317–335.
    [Google Scholar]
  34. Gradmann, S., Hübscher, C., Ben‐Avraham, Z., Gajewski, D. & Netzeband, G. (2005) Salt tectonics off northern Israel. Mar. Petrol. Geol., 22, 597–611.
    [Google Scholar]
  35. Graf, A.A. (2002) Le Cénomanien supérieur en Bolivie: Etude sédimentologique et stratigraphique de la Formation Matilde‐Miraflores. Travail de diplôme, Université de Fribourg, Suisse.
  36. Graf, A.A., Strasser, A. & Caron, M. (2003) OAE‐2 equivalent (Upper Cenomanian) recorded in Bolivian shallow‐water sediments. Abstract 11th Swiss Sed. Meeting, Fribourg, 39–40.
  37. Graziano, R. (2001) The Cretaceous megabreccias of the Gargano Promontory (Apulia, southern Italy): their stratigraphic and genetic meaning in the evolutionary framework of the Apulia Carbonate Platform. Terra Nova, 13, 110–116.
    [Google Scholar]
  38. Green, A. & Wernicke, B. (1986) Possible large‐magnitude Neogene extension on the southern Peruvian Altiplano: implications for the dynamics of mountain building. Eos Trans. AGU, 67 (44), Jt. Assem. Suppl., Abstract T52C‐02.
    [Google Scholar]
  39. Haflidason, H., Lien, R., Sejrup, H.P., Forsberg, C.F. & Bryn, P. (2005) The dating and morphometry of the Storegga Slide. Mar. Petrol. Geol., 22, 123–136.
    [Google Scholar]
  40. Haflidason, H., Sejrup, H.P., Nygård, A., Mienert, J., Bryn, P., Lien, R., Forsberg, C.F., Berg, K. & Masson, D. (2004) The Storegga Slide: architecture, geometry and slide-development. Mar. Geol., 213, 201–234.
    [Google Scholar]
  41. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., De Graciansky, P.‐C. & Vail, P.R. (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins, chart 1. In: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (Ed. by P.‐C.De Graciansky , J.Hardenbol , T.Jacquin & P.R.Vail ), SEPM Spec. Publ ., 60, 363–364.
    [Google Scholar]
  42. Heim, A. (1947) Estudios tectónicos en la región del campo petrolífero de Pirín, lado NW del Lago Titicaca. Boletín Oficial de la Dirección de Minas y Petróleo (Ministerio de Fomento), Año XXVI, 79, 47 p.
  43. Huvenne, V.A.I., Croker, P.F. & Henriet, J.P. (2002) A refreshing 3D view of an ancient collapse and slope failure. Terra Nova, 14, 33–40.
    [Google Scholar]
  44. Jaillard, E. (1990) Evolución de la margen andina en el norte del Perú desde el Aptiano superior hasta el Senoniano. Bol. Soc. Geol. Perú, 81, 3–13.
    [Google Scholar]
  45. Jaillard, E. (1994) Kimmeridgian to Paleocene tectonic and geodynamic evolution of the Peruvian (and Ecuadorian) margin. In: Cretaceous Tectonics of the Andes (Ed. by J.A.Salfity ), pp. 101–167. Earth Evolution Sciences Monograph Series, Vieweg Publications, Wiesbaden.
    [Google Scholar]
  46. Jaillard, E. (1995) La sedimentación Albiana–Turoniana en el Sur del Perú (Arequipa–Puno–Putina). Soc. Geol. Perú, Vol. Jubilar Alberto Benavides, 135–157.
    [Google Scholar]
  47. Jaillard, E. & Arnaud‐Vanneau, A. (1993) The Cenomanian–Turonian transition on the Peruvian margin. Cretaceous Res., 14, 585–605.
    [Google Scholar]
  48. Jaillard, E., Cappetta, H., Ellenberger, P., Feist, M., Grambast‐Fessard, N., Lefranc, J.‐P. & Sige, B. (1993) The Late Cretaceous Vilquechico Group of southern Peru. Sedimentology, paleontology, biostratigraphy, correlations. Cretaceous Res., 14, 623–661.
    [Google Scholar]
  49. Jaillard, E. & Sempere, T. (1991) Las secuencias sedimentarias de la Formación Miraflores y su significado cronoestratigráfico. Rev. Técn. YPFB, 12, 257–264.
    [Google Scholar]
  50. Jaillard, E., Sempere, T., Soler, P., Carlier, G. & Marocco, R. (1995) The role of Tethys in the evolution of the northern Andes between Late Permian and Late Eocene times. In: The Ocean Basins and Margins, Volume 8: The Tethys Ocean (Ed. by A.E.M.Nairn , L.‐E.Ricou , B.Vrielynck & J.Dercourt ), pp. 463–492. Plenum Press, New York.
    [Google Scholar]
  51. Kalafatovich, V. (1957) Edad de las calizas de la Formación Yuncaypata, Cuzco. Bol. Soc. Geol. Perú, 32, 127–139.
    [Google Scholar]
  52. Klinck, B.A., Ellison, R.A. & Hawkins, M.P. (1986) The geology of the Cordillera Occidental and Altiplano west of Lake Titicaca, southern Peru. Preliminary report, INGEMMET, Lima, Peru, 353 p.
  53. Lajoie, J. (1972) Slump fold axis orientations: an indication of paleoslope? J. Sedimen. Petrol., 42, 584–586.
    [Google Scholar]
  54. Laubacher, G. (1978) Géologie des Andes péruviennes: Géologie de la Cordillère Orientale et de l'Altiplano au nord et nord‐ouest du lac Titicaca (Pérou). Travaux et Documents de l'ORSTOM, 95, 219 p.
  55. Lewis, K.B. (1971) Slumping on a continental slope inclined at 1–4°. Sedimentology, 16, 97–110.
    [Google Scholar]
  56. Locat, J. & Lee, H.J. (2002) Submarine landslides: advances and challenges. Can. Geotech. J., 39, 193–212.
    [Google Scholar]
  57. Lucente, C.C. & Pini, G.A. (2003) Anatomy and emplacement mechanism of a large submarine slide within a Miocene foredeep in the Northern Apennines, Italy: a field perspective. Am. J. Sci., 303, 565–602.
    [Google Scholar]
  58. Martinsen, O.J. (1989) Styles of soft‐sediment deformation on a Namurian (Carboniferous) delta slope, western Irish Namurian Basin, Ireland. In: Deltas: Sites and Traps for Fossil Fuels (Ed. by M.K.G.Whateley & K.T.Pickering ), Spec. Publ. Geol. Soc. London , 41, 167–177.
    [Google Scholar]
  59. Martinsen, O.J. & Bakken, B. (1990) Extensional and compressional zones in slumps and slides in the Namurian of County Clare, Ireland. J. Geol. Soc. London, 147, 153–164.
    [Google Scholar]
  60. Mienert, J., Berndt, C., Laberg, J.S. & Vorren, T.O. (2002) Slope Instability of Continental Margins. In: Ocean Margin Systems (Ed. by G.Wefer , D.Billet , D.Hebbeln , B.B.Jørgensen , M.Schlüter & T.Van Veering ), pp. 179–193. SpringerVerlag, Berlin.
    [Google Scholar]
  61. Moore, A. (1993) Neogene crustal extension in the southern Peruvian Altiplano: Implications for the dynamics of mountain building. Unpublished PhD Thesis, Harvard University, 279 p.
  62. Mourgues, R. & Cobbold, P.R. (2003) Some tectonic consequences of fluid overpressures and seepage forces as demonstrated by sandbox modelling. Tectonophysics, 376, 75–97.
    [Google Scholar]
  63. Müller, G. (1967) Diagenesis in argillaceous sediments. In: Diagenesis in Sediments (Ed. by G.Larsen & G.V.Chilingar ), Developments in Sedimentology , 8, 127–177. Elsevier, Amsterdam.
    [Google Scholar]
  64. Myers, J.S. (1974) Cretaceous stratigraphy and structure, western Andes of Peru between latitudes 10° and 10°30′S. Am. Assoc. Petrol. Geol. Bull., 58, 474–487.
    [Google Scholar]
  65. Newell, N.D. (1949) Geology of the Lake Titicaca region, Peru and Bolivia. Geol. Soc. Am. Memoir, 36, 111 p.
    [Google Scholar]
  66. Nichols, R.J. (1995) The liquification and remobilization of sandy sediments. In: Characterization of Deep Marine Clastic Systems (Ed. by A.J.Hartley & D.J.Prosser ), Spec. Publ. Geol. Soc. London , 94, 63–76.
    [Google Scholar]
  67. Payros, A., Pujalte, V. & Orue‐Etxebarria, X. (1999) The South Pyrenean Eocene carbonate megabreccias revisited: new interpretation based on evidence from the Pamplona Basin. Sediment. Geol., 125, 165–194.
    [Google Scholar]
  68. Pino, A., Sempere, T., Jacay, J. & Fornari, M. (2004) Estratigrafía, paleografía y paleotectónica del intervalo Paleozoico Superior – Cretáceo inferior en el área de Mal Paso – Palca (Tacna). Publ. Especial Soc. Geol. Perú, 5, 15–44.
    [Google Scholar]
  69. Popenoe, P., Schmuck, E.A. & Dillon, W.P. (1993) The Cape Fear Landslide; slope failure associated with salt diapirism and gas hydrate decomposition. In: Submarine Landslides; Selected Studies in the U.S. Exclusive Economic Zone (Ed. by W.C.Schwab , H.J.Lee & D.C.Twichell ), pp. 40–53. U.S. Geological Survey Bulletin.
    [Google Scholar]
  70. Portugal, J. (1964) Geology of the Puno‐Santa Lucia area, Department of Puno, Peru. Unpublished PhD Thesis, University of Cincinnati, 141 p.
  71. Portugal, J. (1974) Mesozoic and Cenozoic stratigraphy and tectonic events of Puno‐Santa Lucia area, Department of Puno, Peru. AAPG Bull., 58, 982–999.
    [Google Scholar]
  72. Rassmuss, J.E. (1935) Informe sobre la región petrolífera de Puno. Bol. Dir. Minas y Petróleo Ministerio Fomento del Perú, año 15, 45, 85–105.
    [Google Scholar]
  73. Sempere, T. (1994) Kimmeridgian? to Paleocene tectonic evolution of Bolivia. In: Cretaceous Tectonics in the Andes (Ed. by J.A.Salfity ), pp. 168–212 Earth Evolution Sciences Monograph Series, Vieweg Publications, Wiesbaden.
    [Google Scholar]
  74. Sempere, T. (1995) Phanerozoic evolution of Bolivia and adjacent regions. In: Petroleum Basins of South America (Ed. by A.J.Tankard , R.Suárez & H.J.Welsink ), American Association of Petroleum Geologists Memoir62, 207–230.
    [Google Scholar]
  75. Sempere, T., Acosta, H. & Carlotto, V. (2004a) Estratigrafía del Mesozoico y Paleógeno al Norte del Lago Titicaca. Publ. Especial Soc. Geol. Perú, 5, 81–103.
    [Google Scholar]
  76. Sempere, T., Carlier, G., Soler, P., Fornari, M., Carlotto, V., Jacay, J., Arispe, O., Néraudeau, D., Cardenas, J., Rosas, S. & Jiménez, N. (2002a) Late permian–middle Jurassic lithospheric thinning in Peru and Bolivia, and its bearing on Andean‐age tectonics. Tectonophysics, 345, 153–181.
    [Google Scholar]
  77. Sempere, T. & Jacay, J. (2006) Estructura tectónica del sur del Perú (antearco, arco, y Altiplano suroccidental). Extended abstract, XIII Congreso Peruano de Geología, Lima, 324–327.
  78. Sempere, T. & Jacay, J. (2007) Synorogenic extensional tectonics in the forearc, arc and southwest Altiplano of southern Peru. Eos Trans. AGU, 88 (23), Jt. Assem. Suppl., Abstract U51B‐04.
  79. Sempere, T., Jacay, J., Carrillo, M.‐A., Gómez, P., Odonne, F. & Biraben, V. (2000) Características y génesis de la Formación Ayabacas (Departamentos de Puno y Cusco). Bol. Soc. Geol. Perú, 90, 69–76.
    [Google Scholar]
  80. Sempere, T., Jacay, J., Carlotto, V., Martínez, W., Bedoya, C., Fornari, M., Roperch, P., Acosta, H., Acosta, J., Cerpa, L., Flores, A., Ibarra, I., Latorre, O., Mamani, M., Meza, P., Odonne, F., Orós, Y., Pino, A. & Rodríguez, R. (2004b) Sistemas transcurrentes de escala litosférica en el Sur del Perú. Publ. Especial Soc. Geol. Perú, 5, 105–110.
    [Google Scholar]
  81. Sempere, T., Jacay, J., Fornari, M., Roperch, P., Acosta, H., Bedoya, C., Cerpa, L., Flores, A., Husson, L., Ibarra, I., Latorre, O., Mamani, M., Meza, P., Odonne, F., Oros, Y., Pino, A. & Rodríguez, R. (2002b) Lithospheric‐scale transcurrent fault systems in Andean southern Peru. Extended abstract, V International Symposium on Andean Geodynamics, Toulouse, 601–604.
  82. Sempere, T., Jacay, J., Pino, A., Bertrand, H., Carlotto, V., Fornari, M., García, R., Jiménez, M., Marzoli, A., Meyer, C.A., Rosas, S. & Soler, P. (2004c) Estiramiento litosférico del Paleozoico Superior al Cretáceo Medio en el Perú y Bolivia. Publ. Especial Soc. Geol. Perú, 5, 45–79.
    [Google Scholar]
  83. Sigé, B., Sempere, T., Butler, R.F., Marshall, L.G. & Crochet, J.‐Y. (2004) Age and stratigraphic reassessment of the fossil‐bearing Laguna Umayo red mudstone unit, SE Peru, from regional stratigraphy, fossil record, and paleomagnetism. Geobios, 37, 771–794.
    [Google Scholar]
  84. Spathopoulos, F. (1996) An insight on salt tectonics in the Angola Basin, South Atlantic. In: Salt Tectonics (Ed. by G.I.Aslop , D.J.Blundell & I.Davison ), Spec. Publ. Geol. Soc. London , 92, 187–196.
    [Google Scholar]
  85. Spence, G.H. & Tucker, M.E. (1997) Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sediment. Geol., 112, 163–193.
    [Google Scholar]
  86. Spörli, K.B. & Rowland, J.V. (2007) Superposed deformation in turbidites and syn‐sedimentary slides of the tectonically active Miocene Waitemata Basin, northern New Zealand. Basin Res., 19, 199–216.
    [Google Scholar]
  87. Steen, Ø. & Andresen, A. (1997) Deformational structures associated with gravitational block gliding: examples from sedimentary olistoliths in the Kalvåg Melange, western Norway. Am. J. Sci., 297, 56–97.
    [Google Scholar]
  88. Strachan, J.L. & Alsop, G.I. (2006) Slump folds as estimators of palaeoslope: a case study from the Fisherstreet Slump of County Clare, Ireland. Basin Res., 18, 451–470.
    [Google Scholar]
  89. Sultan, N., Cochonat, P., Canals, M., Cattaneo, A., Dennielou, B., Haflidason, H., Laberg, J.S., Long, D., Mienert, J., Trincardi, F., Urgeles, R., Vorren, T.O. & Wilson, C. (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Marine Geol., 213, 29–321.
    [Google Scholar]
  90. Varnes, D.J. (1978) Slope movement types and processes. In: Landslides‐Analysis and Control. Special Report (Ed. by R.L.Shuster & R.J.Krizek ). 176 (pp. 11–33. National Academy of Sciences, Washington.
    [Google Scholar]
  91. Vendeville, B. & Cobbold, P.R. (1987) Glissements gravitaires synsédimentaires et failles normales listriques: modèles expérimentaux. C. R.Acad. Sci., Sér. II, 305, 1313–1319.
    [Google Scholar]
  92. Vendeville, B. & Gaullier, V. (2003) Role of pore‐fluid pressure and slope angle in triggering submarine mass movements: natural examples and pilot experimental models. In: Submarine Mass Movements and their Consequences (Ed. by J.Locat & J.Mienert ), pp. 137–144. Kluwer Academic Publishers, Dordrecht (the Netherlands).
    [Google Scholar]
  93. Vernhet, E., Heubeck, C., Zhu, M.‐Y. & Zhang, J.‐M. (2006) Large‐scale slope instability at the southern margin of the Ediacaran Yangtze platform (Hunan province, central China). Precambrian Res., 148, 32–44.
    [Google Scholar]
  94. Vorren, T.O. & Laberg, J.S. (2001) Late Quaternary sedimentary processes and environment on the Norwegian‐Greenland Sea continental margins. In: Sedimentary Environments Offshore Norway – Palaeozoic to Recent (Ed. by O.J.Martinsen & T.Dreyer ), pp. 451–456. Elsevier, Amsterdam.
    [Google Scholar]
  95. Woodcock, N.H. (1979) The use of slump structures as paleoslope orientation estimators. Sedimentology, 26, 83–99.
    [Google Scholar]
  96. Wynn, R.B., Masson, D.G., Stow, D.A. & Weaver, P.P. (2000) The Northwest African slope apron: a modern analogue for deep-water systems with complex sea floor topography. Mar. Petrol. Geol., 17, 253–265.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00358.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00358.x
Loading

Data & Media loading...

Supplements

. Table of abbreviations used in the paper. Detailed documentation about the stratigraphy of southern Peru and the data and discussion relative to the age of the Ayabacas collapse.This material is available as part of the online article from: http://www.blackwell‐synergy.com/doi/abs/10.1111/j.1365‐2117.2008.00358.x(This link will take you to the article abstract).Please note: Blackwell Publishing are not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error