1887
Volume 21, Issue 1
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Estimates of the physical boundary conditions on sediment source and sink regions and the flux between them provide insights into the evolution of topography and associated sedimentary basins. We present a regional‐scale, Plio‐Quaternary to recent sediment budget analysis of the Grande, Parapeti and Pilcomayo drainages of the central Andean fold‐thrust belt and related deposits in the Chaco foreland of southern Bolivia (18–23°S). We constrain source‐sink dimensions, fluxes and their errors with topographic maps, satellite imagery, a hydrologically conditioned digital elevation model, reconstructions of the San Juan del Oro (SJDO) erosion surface, foreland sediment isopachs and estimated denudation rates. Modern drainages range from 7453 to 86 798 km2 for a total source area of 153 632 km2. Palaeo‐drainage areas range from 9336 to 52 620 km2 and total 100 706 km2, suggesting basin source area growth of ∼50% since ∼10 Ma. About 2.4–3.1 × 104 km3 were excavated from below the SJDO surface since ∼3 Ma. The modern foredeep is 132 080 km2 with fluvial megafan areas and volumes ranging from 6142 to 22 511 km2 and from 1511 to 3332 km3, respectively. Since Emborozú Formation deposition beginning 2.1 ± 0.2 Ma, the foreland has a fill of ∼6.4 × 104 km3. The volume and rate of deposition require that at least ∼40–60% of additional sediment be supplied beyond that incised from below the SJDO. The data also place a lower limit of ≥0.2 mm year−1 (perhaps ≥0.4 mm year−1) on the time‐ and space‐averaged source area denudation rate since ∼2–3 Ma. These rates are within the median range measured for the Neogene, but are up to 2 orders of magnitude higher than some observations, as well as analytic solutions for basin topography and stratigraphy using a two‐dimensional mathematical model of foreland basin evolution. Source‐to‐sink sediment budget analyses and associated interpretations must explicitly and quantitatively reconcile all available area, volume and rate observations because of their inherent imprecision and the potential for magnification when they are convolved.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00372.x
2008-09-01
2024-04-28
Loading full text...

Full text loading...

References

  1. Aalto, R., Dunne, T. & Guyot, J.L. (2006) Geomorphic controls on Andean denudation rates. J. Geol., 114, 85–99.
    [Google Scholar]
  2. Allen, P.A. (2008) From landscapes into geological history. Nature, 451, 274–276.
    [Google Scholar]
  3. Allmendinger, R.W., Jordan, T.E., Kay, S.M. & Isacks, B.L. (1997) The evolution of the Altiplano‐Puna Plateau of the Central Andes. Annu. Rev. Earth Planet. Sci., 25, 139–174.
    [Google Scholar]
  4. Babault, J., Van Den Driessche, J., Bonnet, S., Castelltort, S. & Crave, A. (2005) Origin of the highly elevated Pyrenean peneplain. Tectonics, 24, doi: DOI: 10.1029/2004TC001697.
    [Google Scholar]
  5. Baby, P., Herail, G., Salinas, R. & Sempere, T. (1992) Geometry and kinematic evolution of passive roof duplexes deduced from cross section balancing; example from the foreland thrust system of the southern Bolivian subandean zone. Tectonics, 11, 523–536.
    [Google Scholar]
  6. Baby, P., Limachi, R., Moretti, I., Mendez, E., Oller, J., Guiller, B. & Specht, M. (1995) Petroleum system of the northern and central Bolivian sub‐Andean zone. In: Petroleum Basins of South America (Ed. by A.J.Tankard , R.Suarez & H.J.Welsink ), Am. Assoc. Petrol. Geol. Mem ., 62, 445–458.
    [Google Scholar]
  7. Barke, R. & Lamb, S. (2006) Late Cenozoic uplift of the Eastern Cordillera, Bolivian Andes. Earth Planet. Sci. Lett., 249, 350–367.
    [Google Scholar]
  8. Barnes, J.B., Ehlers, T.A., McQuarrie, N., O'Sullivan, P.B. & Tawackoli, S. (2008) Thermochronometer record of central Andean Plateau growth, Bolivia (19.5°S). Tectonics, TC3003, doi: DOI: 10.1029/2007TC002174.
    [Google Scholar]
  9. Barnes, J.B. & Pelletier, J.D. (2006) Latitudinal variation of denudation in the evolution of the Bolivian Andes. Am. J. Sci., 306, 1–31.
    [Google Scholar]
  10. Beaumont, C., Kooi, H. & Willett, S. (2000) Coupled tectonic‐surface process models with applications to rifted margins and collisional orogens. In: Geomorphology and Global Tectonics (Ed. by M.Summerfield ), pp. 29–55. John Wiley & Sons, Chichester, UK.
    [Google Scholar]
  11. Bonnell, L.M. & Lander, R.H. (2003) Reservoir quality prediction in deep water to tight gas sandstones using a process/stochastic modeling approach. Am. Assoc. Petrol. Geol. Bull., 87, AAPG Distinguished Lectures.
    [Google Scholar]
  12. Bray, A.A., Lander, R.H., Watkins, C.A., Lowrey, C.J. & Owen, M.Anonymous (2000) Characterisation and prediction of clastic reservoir quality; an integrated model for use in exploration, appraisal and production projects. Am. Assoc. Pet. Geol. Bull., 1408.
    [Google Scholar]
  13. Burgess, P.M. & Allen, P.A. (1996) A forward‐modelling analysis of the controls on sequence stratigraphical geometries. Geol. Soc. Lond. Spec. Publ., 103, 9–24.
    [Google Scholar]
  14. Clark, M.K., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X. & Tang, W. (2006) Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. J. Geophys. Res., 111, doi: DOI: 10.1029/2005JF000294.
    [Google Scholar]
  15. Clevis, Q., De Boer, P. & Wachter, M. (2003) Numerical modelling of drainage basin evolution and three‐dimensional alluvial fan stratigraphy. Sediment. Geol., 163, 85–110.
    [Google Scholar]
  16. Clevis, Q.J.W.A. (2003) Three‐dimensional modelling of thrust‐controlled foreland basin stratigraphy. Doctoral Thesis, Universiteit Utrecht, Utrecht.
  17. Clift, P., Gaedicke, C., Edwards, R., Lee, J.II, Hildebrand, P., Amjad, S., White, R.S. & Schlueter, H.‐U. (2002) The stratigraphic evolution of the Indus Fan and the history of sedimentation in the Arabian Sea. Mar. Geophys. Res., 23, 223–245.
    [Google Scholar]
  18. Clift, P.D. (2006) Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett., 241, 571–580.
    [Google Scholar]
  19. Coudert, L., Sempere, T., Frappa, M., Viquier, C. & Arias, R. (1993) Subsidence and crustal flexure Evolution of the Neogene Chaco Foreland Basin. Third International Symposium on Andean Geodynamics, Oxford, extended abstracts, pp. 291–294.
  20. Critelli, S. (1999) The interplay of lithospheric flexure and thrust accommodation in forming stratigraphic sequences in the Southern Apennines foreland basin system, Italy. Att. Accad. Naz. Lincei. Rendiconti Lincei. Sci. Fisiche Natur., 9, 257–326.
    [Google Scholar]
  21. Critelli, S., Arribas, J., Le Pera, E., Tortosa, A., Marsaglia, K.M. & Latter, K.K. (2003) The recycled orogenic sand provenance from an uplifted thrust belt, Betic Cordillera, southern Spain. J. Sediment. Res., 73, 72–81.
    [Google Scholar]
  22. Curray, J.R. (1994) Sediment volume and mass beneath the Bay of Bengal. Earth Planet. Sci. Lett., 125, 371–383.
    [Google Scholar]
  23. Damanti, J.F. (1993) Geomorphic and structural controls on facies patterns and sediment composition in a modern foreland basin. In: Alluvial Sedimentation (Ed. by M.Marzo & C.Puigdefabregas ), Int. Assoc. Sediment. Spec. Publ . 17, 221–233.
    [Google Scholar]
  24. DeCelles, P.G. & Cavazza, W. (1999) A comparison of fluvial megafans in the Cordilleran (Upper Cretaceous) and modern Himalayan foreland basin systems. Geol. Soc. Am. Bull., 111, 1315–1334.
    [Google Scholar]
  25. DeCelles, P.G. & DeCelles, P.C. (2001) Rates of shortening, propagation, underthrusting, and flexural wave migration in continental orogenic systems. Geology, 29, 135–138.
    [Google Scholar]
  26. DeCelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res., 8, 105–123.
    [Google Scholar]
  27. DeCelles, P.G. & Horton, B.K. (2003) Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geol. Soc. Am. Bull., 115, 58–77.
    [Google Scholar]
  28. De Sitter, L.U. (1952) Pliocene uplift of Tertiary mountain chains. Am. J. Sci., 250, 297–307.
    [Google Scholar]
  29. Devlin, W.J., Rudolph, K.W., Shaw, C.A. & Ehman, K.D. (1993) The effect of tectonic and eustatic cycles on accommodation and sequence‐stratigraphic framework in the Upper Cretaceous foreland basin of southwestern Wyoming. In: Sequence Stratigraphy and Facies Associations (Ed. by H.W.Posamentier , C.P.Summerhayes , B.U.Haq & G.P.Allen ), Int. Assoc. Sediment. Spec. Publ . 18, 501–520.
    [Google Scholar]
  30. Dickinson, W.R. (1974) Plate tectonics and sedimentation. In: Tectonics and Sedimentation (Ed. by W.R.Dickinson ), SEPM Spec. Publ . 22, 1–27.
    [Google Scholar]
  31. Dunn, J.F., Hartshorn, K.G. & Hartshorn, P.W. (1995) Structural styles and hydrocarbon potential of the sub‐Andean thrust belt of southern Bolivia. In: Petroleum Basins of South America (Ed. by A.J.Tankard , R.Suarez & H.J.Welsink ), Am. Assoc. Petrol. Geol. Mem ., 62, 523–543.
    [Google Scholar]
  32. Echavarria, L., Hernandez, R., Allmendinger, R. & Reynolds, J. (2003) Subandean thrust and fold belt of northwestern Argentina; geometry and timing of the Andean evolution. Am. Assoc. Petrol. Geol. Bull., 87, 965–985.
    [Google Scholar]
  33. Ege, H., Sobel, E.R., Scheuber, E. & Jacobshagen, V. (2007) Exhumation history of the southern Altiplano plateau (southern Bolivia) constrained by apatite fission‐track thermochronology. Tectonics, 26, doi: DOI: 10.1029/2005TC001869.
    [Google Scholar]
  34. Einsele, G., Ratschbacher, L. & Wetzel, A. (1996) The Himalaya‐Bengal Fan denudation–accumulation system during the past 20 Ma. J. Geol., 104, 163–184.
    [Google Scholar]
  35. Elger, K., Oncken, O. & Glodny, J. (2005) Plateau‐style accumulation of deformation: Southern Altiplano. Tectonics, 24, doi: DOI: 10/1029/2004TC001675.
    [Google Scholar]
  36. Epis, R.C. & Chapin, C.E. (1975) Geomorphic and tectonic implications of the post‐Laramide, late Eocene erosion surface in the southern Rocky Mountains. In: Cenozoic History of the Southern Rocky Mountains (Ed. by B.F.Curtis ), Geol. Soc. Am. Mem ., 144, 45–74.
    [Google Scholar]
  37. Flemings, P.B. & Jordan, T.E. (1989) A synthetic stratigraphic model of foreland basin development. J. Geophys. Res., 94, 3851–3866.
    [Google Scholar]
  38. Fuller, C.W., Willett, S.D., Hovius, N. & Slingerland, R. (2003) Erosion rates for Taiwan mountain basins: new determinations from suspended sediment records and a stochastic model of their temporal variation. J. Geol., 111, 71–87.
    [Google Scholar]
  39. Geslin, J.K., Demko, T.M., Drzewiecki, P.A., Feldman, H.R., Hasiotis, S.T., McCrimmon, G.G., Van Wagoner, J.C. & Wellner, R.W. (2001). Sediment flux, paleoclimate, and sequence stratigraphy; lessons learned from numerical modeling. 7th International Conference on Fluvial sedimentology Proceedings, Open‐File Report, University of Nebraska‐Lincoln, Conservation and Survey Division, Report: OFR‐60, 106.
  40. Geslin, J.K., Demko, T.M., Drzewiecki, P.A., Feldman, H.R., Hasiotis, S.T., McCrimmon, G.G., Van Wagoner, J.C. & Wellner, R.W. (2002). Relative role of stream discharge, sediment flux, and baselevel change in stratal architecture of continental and nearshore sequences; results from forward numerical modeling. AAPG Annual Meeting Expanded Abstracts, 63.
  41. Gohain, K. & Parkash, B. (1990) Morphology of the Kosi Megafan. In: Alluvial Fans: A Field Approach (Ed. by A.H.Rachocki & M.Church ), pp. 151–178. John Wiley & Sons, Chichester, UK.
    [Google Scholar]
  42. Gubbels, T.L. (1993) Tectonics and geomorphology of the eastern flank of the central Andes, 18–23°S latitude. Doctoral Thesis, Cornell University, Ithaca.
  43. Gubbels, T.L., Isacks, B.L. & Farrar, E. (1993) High‐level surfaces, plateau uplift, and foreland development, Bolivian central Andes. Geology, 21, 695–698.
    [Google Scholar]
  44. Gupta, S. (1997) Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin. Geology, 25, 11–14.
    [Google Scholar]
  45. Hay, W.W., Wold, C.N. & Herzog, J.M. (1992) Preliminary mass‐balanced 3‐D reconstructions of the Alps and surrounding areas during the Miocene. In: Computer Graphics in Geology (Ed. by R.Pflug & J.W.Harbaugh ), Lect. Notes Earth Sci ., 41, 99–110.
    [Google Scholar]
  46. Horton, B.K. (1999) Erosional control on the geometry and kinematics of thrust belt development in the central Andes. Tectonics, 18, 1292–1304.
    [Google Scholar]
  47. Horton, B.K. & DeCelles, P.G. (1997) The modern foreland basin system adjacent to the Central Andes. Geology, 25, 895–898.
    [Google Scholar]
  48. Horton, B.K. & DeCelles, P.G. (2001) Modern and ancient fluvial megafans in the foreland basin system of the Central Andes, southern Bolivia; implications for drainage network evolution in fold‐thrust belts. Basin Res., 13, 43–63.
    [Google Scholar]
  49. Hovius, N. & Leeder, M. (1998) Clastic sediment supply to basins. Basin Res., 10, 1–5.
    [Google Scholar]
  50. Hulka, C. (2005) Sedimentary and tectonic evolution of the Cenozoic Chaco foreland basin, southern Bolivia. Doctoral Thesis, Freie Universitat, Berlin.
  51. Hulka, C., Grafe, K.‐U., Sames, B., Uba, C.E. & Heubeck, C. (2006) Depositional setting of the Middle to Late Miocene Yecua Formation of the Chaco Foreland Basin, southern Bolivia. J. South Am. Earth Sci., 21, 135–150.
    [Google Scholar]
  52. Iriondo, M. (1993) Geomorphology and late Quaternary of the Chaco (South America). Geomorphology, 7, 289–303.
    [Google Scholar]
  53. Iriondo, M.H. (1984) The quaternary of northeastern Argentina. In: Quaternary of South America and Antarctic Peninsula (Ed. by J.Rabassa ). 2, 51–78.
    [Google Scholar]
  54. Isacks, B.L. (1988) Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J. Geophys. Res., 93, 3211–3231.
    [Google Scholar]
  55. Jordan, T.E. (1995) Retroarc foreland and related basins. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & R.V.Ingersoll ), pp. 331–362. Blackwell Science, Oxford.
    [Google Scholar]
  56. Jordan, T.E. & Alonso, R.N. (1987) Cenozoic stratigraphy and basin tectonics of the Andes Mountains, 20°–28° south latitude. Am. Assoc. Petrol. Geol. Bull., 71, 49–64.
    [Google Scholar]
  57. Jordan, T.E., Reynolds, J.H.III & Erikson, J.P. (1997) Variability in age of initial shortening and uplift in the Central Andes. In: Tectonic Uplift and Climate Change (Ed. by W.F.Ruddiman ), pp. 41–61. Plenum Press, New York, NY.
    [Google Scholar]
  58. Kennan, L. (2000) Large‐scale geomorphology of the Andes; interrelationships of tectonics, magmatism and climate. Ed. by M.A.Summerfield ), pp. 167–199. John Wiley & Sons, Chichester, UK.
  59. Kennan, L., Lamb, S. & Rundle, J. (1995) K‐Ar dates from the Altiplano and Cordillera Oriental of Bolivia; implications for Cenozoic stratigraphy and tectonics. J. South Am. Earth Sci., 8, 163–186.
    [Google Scholar]
  60. Kennan, L., Lamb, S.H. & Hoke, L. (1997) High‐altitude palaeosurfaces in the Bolivian Andes; evidence for late Cenozoic surface uplift. In: Palaeosurfaces; Recognition, Reconstruction and Palaeoenvironmental Interpretation (Ed. by M.Widdowson ), Spec. Publ. Geol. Soc. Lond ., 120, 307–323.
    [Google Scholar]
  61. Kley, J. (1996) Transition from basement‐involved to thin‐skinned thrusting in the Cordillera Oriental of southern Bolivia. Tectonics, 15, 763–775.
    [Google Scholar]
  62. Kley, J. (1999) Geologic and geometric constraints on a kinematic model of the Bolivian Orocline. J. South Am. Earth Sci., 12, 221–235.
    [Google Scholar]
  63. Kuhlemann, J., Frisch, W., Dunkl, I. & Szekely, B. (2001) Quantifying tectonic versus erosive denudation by the sediment budget; the Miocene core complexes of the Alps. Tectonophysics, 330, 1–23.
    [Google Scholar]
  64. Kuhlemann, J., Frisch, W., Szekely, B., Dunkl, I. & Kazmer, M. (2002) Post‐collisional sediment budget history of the Alps; tectonic versus climatic control. Int. J. Earth Sci., 91, 818–837.
    [Google Scholar]
  65. Lander, R.H. & Walderhaug, O. (1999) Predicting porosity through simulating sandstone compaction and quartz cementation. Am. Assoc. Petrol. Geol. Bull., 83, 433–449.
    [Google Scholar]
  66. Latrubesse, E.M., Stevaux, J.C. & Singha, R. (2005) Tropical rivers. Geomorphology, 70, 187–206.
    [Google Scholar]
  67. Le Pichon, X., Fournier, M. & Jolivet, L. (1992) Kinematics, topography, shortening, and extrusion in the India–Eurasia collision. Tectonics, 11, 1085–1098.
    [Google Scholar]
  68. Leeder, M., Harris, T. & Kirkby, M. (1998) Sediment supply and climate change; implications for basin stratigraphy. Basin Res., 10, 7–18.
    [Google Scholar]
  69. Leier, A.L., DeCelles, P.G. & Pelletier, J.D. (2005) Mountains, monsoons, and megafans. Geology, 33, 289–292.
    [Google Scholar]
  70. Marshall, L.G., Sempere, T. & Gayet, M. (1993) The Petaca (late Oligocene‐middle Miocene) and Yecua (late Miocene) formations of the Subandean‐Chaco Basin, Bolivia, and their tectonic significance. In: Documents des Laboratoires de Geologie, Lyon, 125 (Ed. by M.Gayet ), 291–301. Departement des Sciences de la Terre, Universite Claude Bernard.
    [Google Scholar]
  71. McMillan, M.E., Heller, P.L. & Wing, S.L. (2006) History and causes of post‐Laramide relief in the Rocky Mountain orogenic plateau. Geol. Soc. Am. Bull., 118, 393–405.
    [Google Scholar]
  72. McQuarrie, N. (2002) The kinematic history of the central Andean fold‐thrust belt, Bolivia; implications for building a high plateau. Geol. Soc. Am. Bull., 114, 950–963.
    [Google Scholar]
  73. McQuarrie, N., Barnes, J.B. & Ehlers, T.A. (2008) Geometric, kinematic, and erosional history of the central Andean Plateau, Bolivia (15–17°S). Tectonics, TC3007, doi: DOI: 10.1029/2006TC002054.
    [Google Scholar]
  74. McQuarrie, N., Horton, B.K., Zandt, G., Beck, S. & DeCelles, P.G. (2005) Lithospheric evolution of the Andean fold‐thrust belt, Bolivia, and the origin of the central Andean plateau. Tectonophysics, 399, 15–37.
    [Google Scholar]
  75. Moretti, I., Baby, P., Mendez, E. & Zubieta, D. (1996) Hydrocarbon generation in relation to thrusting in the Sub Andean Zone from 18 to 22°S, Bolivia. Petrol. Geosci., 2, 17–28.
    [Google Scholar]
  76. Müller, J.P., Kley, J. & Jacobshagen, V. (2002) Structure and Cenozoic kinematics of the Eastern Cordillera, southern Bolivia (21°S). Tectonics, 21, doi: DOI: 10.1029/2001TC001340.
    [Google Scholar]
  77. Overeem, I., Syvitski, J.P.M., Hutton, E.W.H. & Kettner, A.J. (2005) Stratigraphic variability due to uncertainty in model boundary conditions; a case study of the New Jersey shelf over the last 40,000 years. Mar. Geol., 224, 23–41.
    [Google Scholar]
  78. Patterson, P.E., Sprague, A.R., Hill, R.E. & McDonald, K.M.Anonymous (1995). Sequence stratigraphy and fluvial facies architecture, Farrer and Tuscher formations (Campanian), Tusher Canyon, UT. AAPG and SEPM Annual Meeting Abstracts 4, 74.
  79. Pazzaglia, F.J. & Brandon, M.T. (1996) Macrogeomorphic evolution of the post‐Triassic Appalachian Mountains determined by deconvolution of the offshore based sedimentary record. Basin Res., 8, 255–278.
    [Google Scholar]
  80. Perez, R., Ghosh, S., Chatellier, J.‐Y. & Lander, R.Anonymous (1999). Application of sandstone diagenetic modeling to reservoir quality assesment of the Misoa Formation, Bachaquero Field, Maracaibo Basin, Venezuela. AAPG Annual Meeting Expanded Abstracts, A107.
  81. Phillips, J.D. & Gomez, B. (2007) Controls on sediment export from the Waipaoa River basin, New Zealand. Basin Res., 19, 241–252.
    [Google Scholar]
  82. Placzek, C., Quade, J. & Patchett, P.J. (2006) Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano; implications for causes of tropical climate change. Geol. Soc. Am. Bull., 118, 515–532.
    [Google Scholar]
  83. Robin, C., Rouby, D., Granjeon, D., Guillocheau, F., Allemand, P. & Raillard, S. (2005) Expression and modelling of stratigraphic sequence distortion. Sediment. Geol., 178, 159–186.
    [Google Scholar]
  84. Robinson, R.A.J. & Slingerland, R.L. (1998a) Grain‐size trends, basin subsidence and sediment supply in the Campanian Castlegate Sandstone and equivalent conglomerates of central Utah. Basin Res., 10, 109–127.
    [Google Scholar]
  85. Robinson, R.A.J. & Slingerland, R.L. (1998b) Origin of fluvial grain‐size trends in a foreland basin; the Pocono Formation on the central Appalachian Basin. J. Sediment. Res., 68, 473–486.
    [Google Scholar]
  86. Roeder, D. & Chamberlain, R.L. (1995) Structural geology of sub‐Andean fold and thrust belt in northwestern Bolivia. In: Petroleum Basins of South America (Ed. by A.J.Tankard , R.Suarez & H.J.Welsink ), Am. Assoc. Petrol. Geol. Mem ., 62, 459–479.
    [Google Scholar]
  87. Schlunegger, F., Jordan, T.E. & Klaper, E.M. (1997) Controls of erosional denudation in the orogen on foreland basin evolution; the Oligocene central Swiss Molasse Basin as an example. Tectonics, 16, 823–840.
    [Google Scholar]
  88. Schlunegger, F., Melzer, J. & Tucker, G.E. (2001) Climate, exposed source‐rock lithologies, crustal uplift and surface erosion; a theoretical analysis calibrated with data from the Alps/North Alpine foreland basin system. Int. J. Earth Sci., 90, 484–499.
    [Google Scholar]
  89. Scott, G.R. (1975) Cenozoic surfaces and deposits in the southern Rocky Mountains. In: Cenozoic History of the Southern Rocky Mountains (Ed. by B.F.Curtis ), Geol. Soc. Am. Mem ., 144, 227–248.
    [Google Scholar]
  90. Servant, M., Sempere, T., Argollo, J., Bernat, M., Feraud, G. & Lo Bello, P. (1989) Cenozoic morphogenesis and uplift of the Eastern Cordillera in the Bolivian Andes. Comp. Rend. Acad. Sci. Paris, 309, 416–422.
    [Google Scholar]
  91. Simpson, G. (2004) Dynamic interactions between erosion, deposition, and three‐dimensional deformation in compressional fold belt setting. J. Geophys. Res., 109, doi: DOI: 10.1029/2003JF000111.
    [Google Scholar]
  92. Simpson, G. (2006) Modelling interactions between fold‐thrust belt deformation, foreland flexure and surface mass transport. Basin Res., 18, 125–143.
    [Google Scholar]
  93. Sobel, E.R. & Strecker, M.R. (2003) Uplift, exhumation and precipitation: tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina. Basin Res., 15, 431–451.
    [Google Scholar]
  94. Stock, G.M., Ehlers, T.A. & Farley, K.A. (2006) Where does sediment come from? Quantifying catchment erosion with detrital apatite (U‐Th)/He thermochronometry. Geology, 34, 725–728.
    [Google Scholar]
  95. Tucker, G.E. & Slingerland, R.L. (1996) Predicting sediment flux from fold and thrust belts. Basin Res., 8, 329–349.
    [Google Scholar]
  96. Uba, C.E., Heubeck, C. & Hulka, C. (2005) Facies analysis and basin architecture of the Neogene Subandean synorogenic wedge, southern Bolivia. Sediment. Geol., 180, 91–123.
    [Google Scholar]
  97. Uba, C.E., Heubeck, C. & Hulka, C. (2006) Evolution of the late Cenozoic Chaco foreland basin, southern Bolivia. Basin Res., 18, 145–170.
    [Google Scholar]
  98. Uba, C.E., Strecker, M.R. & Schmitt, A.K. (2007) Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene. Geology, 35, 979–982.
    [Google Scholar]
  99. Van Wagoner, J.C. (1995) Sequence stratigraphy and marine to nonmarine facies architecture of foreland basin strata, Book Cliffs, Utah, U.S.A.. In: Sequence Stratigraphy of Foreland Basin Deposits; Outcrop and Subsurface Examples from the Cretaceous of North America (Ed. by J.C.Van Wagoner & G.T.Bertram ), Am. Assoc. Petrol. Geol. Mem ., 64, 137–223.
    [Google Scholar]
  100. Van Wagoner, J.C., Beaubouef, R.T., Hoyal, D.C.J.D., Dunn, P.A., Adair, N.L., Abreu, V.L.D., Wellner, R.W., Awwiller, D.N., Sun, T., Deffenbaugh, M. & HUH, C. (2003). Energy dissipation and the fundamental shape of siliciclastic sedimentary bodies. AAPG and SEPM Annual Meeting Extended Abstracts, 175.
  101. Widdowson, M. (1997) The geomorphological and geological importance of palaeosurfaces. In: Palaeosurfaces: Recognition, Reconstruction and Palaeoenvironmental Interpretation (Ed. by M.Widdowson ), Spec. Publ. Geol. Soc. Lond ., 120, 1–12.
    [Google Scholar]
  102. Wilkinson, M.J., Marshall, L.G. & Lundberg, J.G. (2006) River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. J. South Am. Earth Sci., 21, 151–172.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00372.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00372.x
Loading

Data & Media loading...

Supplements

Details on some of the methodologies and uncertainties presented in the main text.Please note: Blackwell Publishing is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error